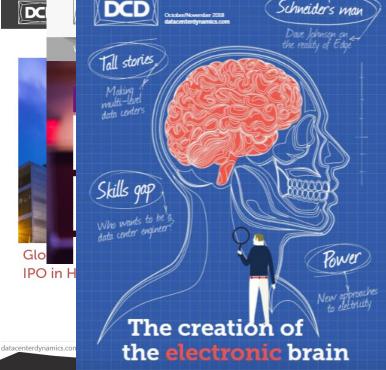
Franck Petit, Senior Sales Manager - APAC, DCD Group


Standing on the Shoulders of Giants: Learnings from Hyperscale

About Us

Glo IPO in H

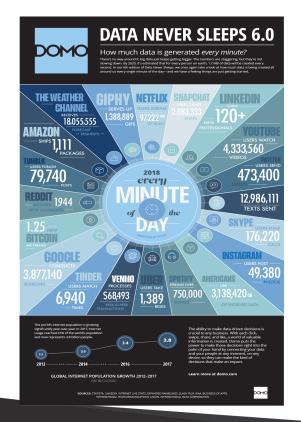
₩ TBA /

Agenda

- 1. The context of Hyperscale/ the need
- 2. The profile of Hyperscale/ the delivery
- 3. Learnings from Hyperscale

Key Statistics behind Data Center Growth – Total IP Traffic

Traffic	2017	2020	CAGR
IP Traffic per month	122 Exabytes	254 Exabytes	26%
Internet users	2.8 bn	3.9 bn	6.9%
Number of connected devices	17 bn	22.5 bn	10%
Average speed	7.2 MBps	47.7 MBps	87.8%
% traffic that is video	67%	80%	NA



Key Statistics behind Data Center Growth – Mobile IP Traffic

Total Mobile Traffic	2017	2020	CAGR
IP Traffic per month	12 Exabytes	41 Exabytes	46%
Mobile users	4.43 bn	5.5 bn	2.8%
Number of mobile ready devices	8.6 bn	11.6 bn	8.5%
Average broadband speed	2.0 MBps	6.5 MBps	26.6%

What are the drivers creating this exponential demand?

This is all creating 'The Perfect Storm'

We are entering Zettastructure?- the Era of the Zettabyte

- By 2020 there will be 5 Zettabytes of data generated by more than 22 billion connected devices.
- One Zettabyte is 10²¹
- By the end of the decade 10% of global energy will be consumed by IT when 3.2% is used actually.
- By 2040 it has been calculated that to process the world's data requirements using today's infrastructure, it would consume all the energy in the world.

Compacting Computational Footprint The Jevon Paradox

2001

5MW site 2MW IT load 2000 cabinets ~3000m²

2014

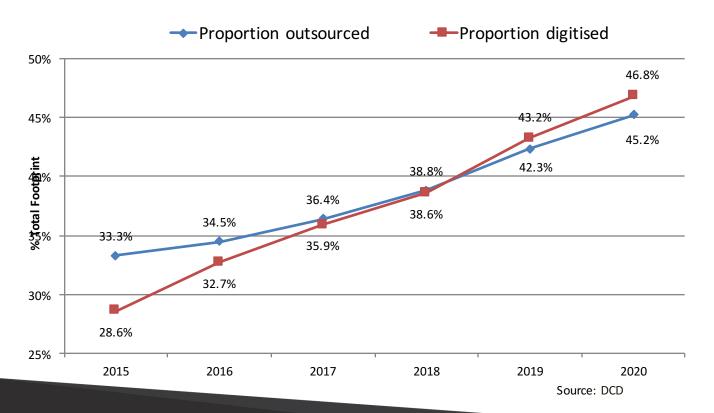
50kW site 30kW IT load 5 cabinets ~16m²

2018

3.2kW site 2.4kW IT load <1 cabinet ~3.2m²

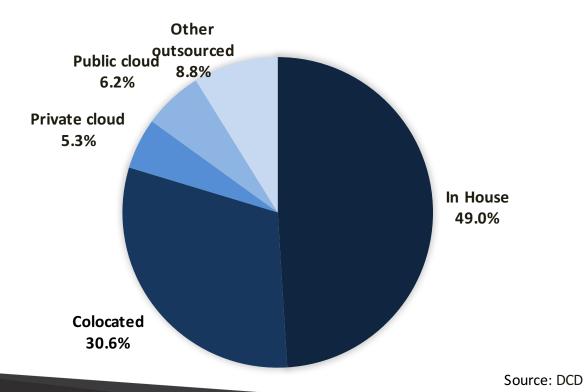
The Profile of Hyperscale

- Hyperscale associated more than anything with growth of cloud & variable demand
- Key operational & commercial value beyond data center standards of resilience, efficiency & immediacy is scalability.
- This means facilities that are usually very large, close to fiber network intersection points and (increasingly) with access to sustainable energy sources.
- Design principles include open networks, disaggregation, software-defined orchestration, core & pod units.



The scope of hyperscale

- A hyperscale data center needs to support thousands of physical servers and millions of virtual machines. ... Hyperscale computing boosts overall system flexibility and allows for a more agile environment.
- Very few data centers maybe 700-750 now from 230,000 data centers worldwide
- Still account for less than 10% of USA's total data center energy consumption
- By 2021, Cisco estimates that hyperscale will account for:
 - 53% of all data center servers
 - 69% of all DC processing power
 - 65% of all data stored in DCs, and
 - 55% of all DC traffic.



Increased Reliance on External Providers, particularly to access cloud services in conjunction with hybrid systems Assets/Investment

January 2019 research indicates in-house moving under 50% of footprint across APAC

General profile footprint in APAC end 2018

China

Inhouse 34%
Colocation, Hosting, Managed Services 51%
Clouds 15%

India/South Asia

Inhouse 56%
Colocation, Hosting, Managed Services 36%
Clouds 8%

Singapore

Inhouse 38%
Colocation, Hosting, Managed Services 44%
Clouds 18%

Australia & New Zealand

Inhouse 46%
Colocation, Hosting, Managed Services 42%
Clouds 12%

North East

Inhouse 52%

Colocation, Hosting, Managed Services 38%

Clouds 10%

South East Asia/Indo China

Inhouse 56%

Colocation, Hosting, Managed Services 37%

Clouds 7%

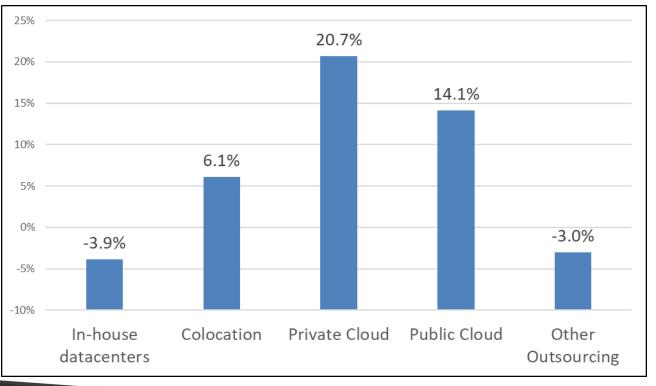
Hong Kong

Inhouse 47%

Colocation, Hosting, Managed Services 46%

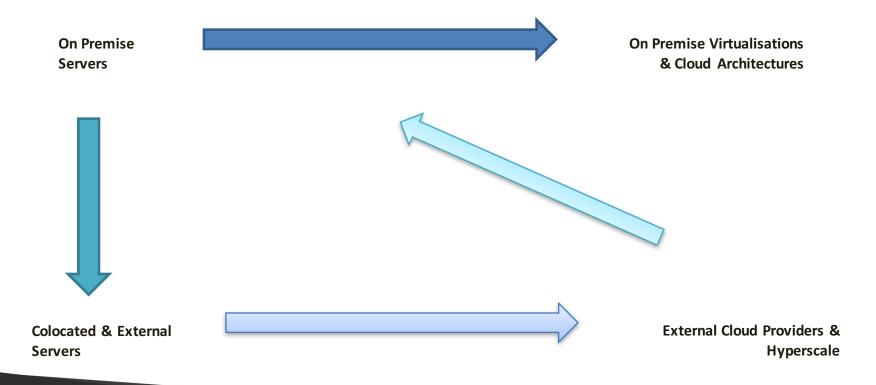
Clouds 7%

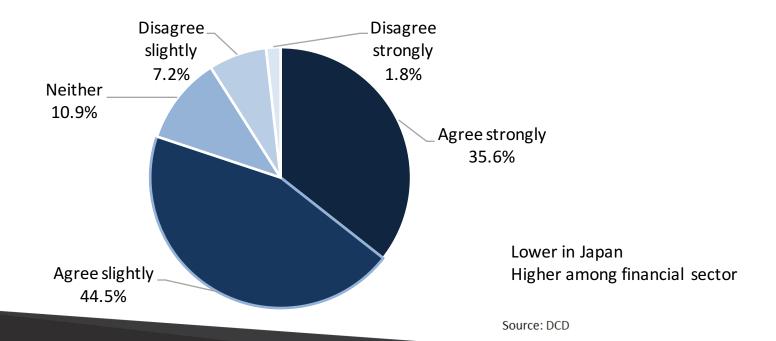
Indonesia

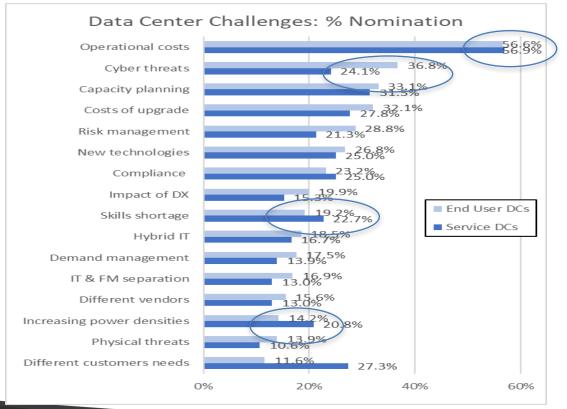

Inhouse 54%

Colocation, Hosting, Managed Services 39%

Clouds 7%


% Change in Digital Infrastructure in next 2 years across APAC


The Infrastructure cycle of Constant Re-Balancing


Standing on the Shoulder of Giants:

"How the cloud 'giants' design and operate their data centers can teach smaller facilities a great deal"

Solutions & learnings looked for

Thank You

