Reaching the Limit of Moore's Law

Computers must process increasingly massive and complex data at higher and higher speeds in order to support digital transformation in society and business. Moore's Law* is approaching its limit, threatening the drastic compute performance required in the coming future.

Quantum Computing is one promising prospect as a next generation computer

*Moore's Law: An empirical rule in the semiconductor industry stating that the number of transistors in a dense integrated circuit doubles every 18~24 months.

Digital Annealer

A new architecture that solves "combinatorial optimization problems" at high speed with digital circuits inspired by quantum phenomena

Ouantum Computers

Still in the research stage ...

Difficult to maintain a quantum stateLimits in connection and expansion

Digital Annealer

Easy to apply to actual problems

Stable operation with digital circuit, and easy miniaturization

Easy mapping of more complex problems with a fully-connected architecture

Digital Annealer Positioning

- Digital Annealer makes use of the annealing method, specialized for combinatorial optimization.
- Unlike quantum computers, Digital Annealer does not require an extremely low temperature environment. Digital Annealer operates stably at room temperature.

What is Quantum Annealing?

FUJITSU

The algorithm's name comes from the annealing process used in metallurgy

Annealing Process in Metallurgy

Metal is heated to a high temperature, and the structure stabilizes as it is slowly cooled(=low energy)

The most stable state has minimum energy

he minimum value

Annealing Method

Blocks are placed randomly, then the entire system is "shaken". The shaking is gradually reduced, and the shapes quickly fit together.

Classical Approach

Blocks are placed in sequence. Process restarts if a solution is not found. Repeated until a solution is found.

Combinatorial Optimization Problems

Seek *combinations* or *sequences* that satisfy given constraints, with the goal of finding the best out of all available combinations

Use Digital Annealer to Solve Combinatorial Optimization Problems

Combinatorial Optimization Problems Across All Industries & Business FUJITSU

Problem and Application Examples Well-Suited for Digital Annealer

Optimization Problems

1.	Molecular Similarity Search	Selection of the similarity of all the compound	Maximum Independent Set Problem
2.	Big Data Visualization Toolkit	Visualizing and clustering big data	Minimum Set Cover Problem
3.	Traffic Route Optimization	Optimize route selection while minimizing route overlap to ease congestion	Candidate Overlay Problem
4.	Financial Portfolio Optimization (QHRP Method ^{*1})	Select investment portfolio assets based on low correlativity	May Cut Problem
5.	Shelf Location Optimization	Optimize shelf placement to improve factory parts pickup	Max Cut Problem

*1 QHRP: Quantum-inspired Hierarchical Risk Parity Copyright 2019 FUJITSU LIMITED

1. High Precision Molecular Similarity Search for Drug DiscoveryFUJITSU

Contributing to the development of highly effective medicines

Issues

The conventional Finger Print method determines the presence or absence of an atomic group, but does not consider the molecular shape. Thus, a precise search cannot be performed.

Finger Print: A method of representing the presence or absence of an atomic group as 0 or 1 and expressing the molecule as a Boolean vector

Technique

By converting the molecular structure to a graph and handling atomic groups as nodes and bonds as edges:

- Precision is improving by considering molecular shape
- · Calculations are performed at high speed by Digital Annealer

- Highly precision molecular similarity search becomes possible
- Expected to improve the efficiency of drug development leading to new highly effective medicines

2. High-Speed Clustering for Big Data Utilization

Visualizing large-scale datasets for more accurate analysis

Issues

As the importance and prevalence of big data increases, highspeed data processing is necessary to effectively derive business insights

Technique

High precision clustering with hierarchical structures is implemented by compressing high dimensional data and segmenting it into portions that can be clustered

- Clustering is accelerated from several hours with conventional methods to just a few minutes with Digital Annealer
- Large scale data sets can be visualized and analyzed
- The level of clustering can be changed to enhance analysis

3. Route Optimization to Reduce Traffic Congestion

Reduce overall travel time by distributing routes throughout a city or factory to avoid congestion

Issues

With conventional routing systems, there is a tendency to assign the shortest distance route, leading to traffic congestion in the city center

Technique

- Optimize route selection to avoid overlap
- Prioritize route option by adding conditions, such as: speed limits, number of lanes, etc.

- Reduce traffic congestion by up to 40% by dispersing traffic
- Apply to cases of iterative simulation used for road development planning
- Applicable to other routing problems, such as warehouse collection and distribution, AGV (Automated Guided Vehicles), and network traffic

4. Investment Portfolio Optimization Through Risk Diversification

0.5

Company

Company E

Company

Instant clustering for the correlation of 500 stocks to compose a risk-resistant portfolio

Issues

The commonly used Minimum Variance (MV) method for portfolio optimization is susceptible to the influence of market fluctuation

Technique

Quantum-inspired Hierarchical Risk Parity (QHRP) portfolio optimization method provides for:

- The clustering of assets into a tree diagram based on risk correlations
- · Composition of risk-diversified portfolios with low correlativity

- Create portfolios with resistance to market fluctuations that continue to provide stable returns
- 60% higher Sharpe Ratio compared to MV method

5. Factory Parts Pick Up Optimization

Reduce travel distance for warehouse parts pick up by up to 45% Now in use at Fujitsu IT Products

Issues

- High-mix, low-volume factory production requires a large variety of parts for each product. Time and labor required dependent on the experience level of each worker
- Inconsistent and inefficient parts pick up process

Technique

- Routes and shelf population are minimized as combinatorial optimization problems
- Correlation of frequently used shelves identified

- Even inexperienced workers can realize efficient parts picking
- Travel distances reduced by up to 45% per month through route and shelf location optimization
- Optimization methods to be deployed to other factories, as well as other processes such as warehouse management

5. Case Study: **Factory Parts Pick Up Optimization - At Fujitsu IT Products**

Company Profile

Company Name	Fujitsu IT Products Limited
--------------	-----------------------------

Location 1-1, Kasajima-to, Kahoku-shi, Ishikawa, 929-1196, Japan

Capital 100 million yen (wholly owned subsidiary of Fujitsu Limited)

Establishment April 1, 2002 Employees 455 people

Industry Manufacture of servers, supercomputers, storage systems, software, etc.

Source: http://www.fujitsu.com/jp/group/fjit/ (Japanese)

富士通してプロダシ

Digital Annealer Project Schedule

Discussion from
September 2017PoC from
October 2017Service
in February 2018

Case Study: http://www.fujitsu.com/global/digitalannealer/case-studies/201804-fjit/

5. Case Study: Factory Parts Pick Up Optimization - Configuration

Goal: Leverage existing operation, and create a new shelf position database to use Digital Annealer to calculate optimal pick up routes

Digital Annealer Advantages

Applicable to real world problems with the stability and balance of scale, connectivity, and precision

Copyright 2019 FUJITSU LIMITED

What Are Scale, Connectivity and Precision?

The Traveling Salesman Problem

Under the constraint that each city **must be visited only once**, find the shortest route (minimum distance)

Digital Annealer Features

Evaluation

- Represent large-scale problems of up to 8192 bits
- High precision with full coupling and 2⁶⁴ bit gradations

Differentiators

- Easy to use with fully connected bits
- Increased escape probability from local minimum energy states using hardware offsetting
- Next bit inversion found using **parallel** search to increase processing speed
- Stochastic parallelism provides significant acceleration

shaping tomorrow with you

Digital Annealer

Roadmap

Copyright 2019 FUJITSU LIMITED

Digital Annealer Roadmap

Expand applications from technical verification to real-world business value

Application Areas Surpassing the Competition - 2nd Generation

Digital Annealer Global Rollout

Digital Annealer Cloud Service rolling out in each region starting from Japan
 Technical Service is under development globally
 Americas

EMEIA

Cloud Service (Planned)
Technical Service Customized Support

> APAC & Oceania

• Cloud Service (Planned)

 Technical Service Customized Support

Japan

Cloud Service
Technical Service
launched May2018

Cloud Service (Planned)
Technical Service Customized Support

Copyright 2019 FUJITSU LIMITED

New AI Headquarters (AI HQ) - Established October 2018

Creating a core base in Vancouver to roll out Fujitsu's AI business and accelerate the application of AI to customers worldwide using Digital Annealer as a key technology

shaping tomorrow with you

Digital Annealer

Partnerships

Copyright 2019 FUJITSU LIMITED

Expanding Digital Annealer Applications Through Partnerships

FUJITSU

Collaborative research in cutting-edge areas

Confronting new issues

in society

1QBit middleware implemented on Digital Annealer

Expansion of application areas

Digital Annealer

WASEDA University 早稲田大学

Promotion of combinatorial optimization as a way to solve societal issues

Digital Annealer Reference Sites & Press Releases

FUjitsu

Digital Annealer Websites:

Japanese

http://www.fujitsu. com/jp/digitalannealer/

English

http://www.fujitsu. com/global/digitalannealer/

YouTube

Digital Annealer public channel

http://www.youtube.com/ channel/UCo0c9YwYOHXLwJnNA_moEJC

Press Releases http://www.fujitsu.com/global/about/resources/news/press-releases/

January 15, 2019

Fujitsu and TC3 Promote Quantum Inspired Digital Annealer Next-Generation Architecture in Topcoder Contest

September 19, 2018

Fujitsu Laboratories and Waseda University Agree to Comprehensively Collaborate on Digital Annealer Research

January 29, 2018

Fujitsu Initiates Joint Research with Recruit Communications on Marketing Technologies Using "Digital Annealer"

September 20, 2017

Fujitsu Laboratories and University of Toronto Enter Strategic Partnership

December 21, 2018

Fujitsu Launches Next Generation Quantum-Inspired Digital Annealer Service

September 18, 2018

Fujitsu Technology to Solve Combinatorial Optimization Problems for Medium-Sized Drug Discovery

September 27, 2017

Exhibited at "CEATEC JAPAN 2017"

May 16, 2017

Fujitsu and 1QBit Collaborate on Quantum Inspired AI Cloud Service

October 2, 2018

Fujitsu Drives Quantum-Inspired Project to Help Solve NatWest's Complex Optimization Challenges

May 15, 2018

Fujitsu Quantum-Inspired Digital Annealer Cloud Service to Rapidly Resolve Combinatorial Optimization Problems

September 20, 2017

Fujitsu Technology Facilitates Application of Combinatorial Optimization Methods to Real-World Problems

October 20, 2016

Fujitsu Laboratories Develops New Architecture that Rivals Quantum Computers in Utility

shaping tomorrow with you