HETEROGENEOUS COMPUTE INFRASTRUCTURE FOR SINGAPORE

PHILIP HEAH
ASSISTANT CHIEF EXECUTIVE
TECHNOLOGY & INFRASTRUCTURE GROUP
LAUNCH OF SERVICES AND DIGITAL ECONOMY (SDE) TECHNOLOGY ROADMAP (NOV 2018)

Source – IMDA Services and Digital Economy (SDE) Technology Roadmap 2018
VISION: SINGAPORE AS A SERVICES 4.0 HUB

A Launchpad for Services 4.0

A #Service40Hub where #EveryBusinessADigitalBusiness and #EmpoweringPossibilities for Businesses

A Competitive Workforce Augmented with Technology

A #DigitalTalentHub where there is a #BotForEveryWorker and #EmpoweringPossibilities for Workers

A Vibrant ICM Ecosystem where Emerging Tech is made easily Accessible

#EmpoweringPossibilities with #GoCloudNative

Source – IMDA Services and Digital Economy (SDE) Technology Roadmap 2018
AI EXPECTED TO BE ONE OF THE KEY TECHNOLOGY ENABLERS FOR SERVICES 4.0

Source – “AI Trends 2019”, CB Insights, 2019
AMOUNT OF COMPUTE USED IN LARGEST AI TRAINING RUNS HAS BEEN INCREASING EXPONENTIALLY

Open AI Analysis
- Since 2012, the amount of compute used in the largest AI training runs has been **increasing exponentially**
 - Doubles every 3.5 months
 - Moore’s Law: doubles very 18 months
 - Improvements in compute have been a key component of AI progress

Reference – “AI and Compute”, OpenAI, May 2018
NEED TO LAY FOUNDATION FOR SG’S DIGITAL INFRASTRUCTURE TO SUPPORT SERVICES 4.0 IN DIGITAL ECONOMY

COMPUTE POWER IS ONE OF THE KEY ECONOMIC GROWTH DRIVERS IN THE 21ST CENTURY

<table>
<thead>
<tr>
<th>CENTURY</th>
<th>ECONOMIC GROWTH DRIVERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-18th</td>
<td>Cultivation & Extraction</td>
</tr>
<tr>
<td>18th - 19th</td>
<td>Manufacturing & Industry</td>
</tr>
<tr>
<td>21st …</td>
<td>Compute Power & Human Potential</td>
</tr>
</tbody>
</table>

Source – Internet Trends 2018, Mary Meeker
IMPLICATIONS OF COMPUTE POWER

01 SCIENTIFIC ADVANCEMENT
Computational leadership is critical to scientific advancement and leadership

02 INDUSTRIAL COMPETITIVENESS
Enable organisations to lower cost of innovation and develop high value innovation

03 NATIONAL SECURITY
Cyberspace now the 5th battleground in addition to land, sea, air and space

Reference – “The Exascale Computing Race Isn’t About Bragging Rights”, DZone, Feb 2018
SDE TECHNOLOGY ROADMAP RECOMMENDATION –
NEED FOR SINGAPORE TO DEVELOP COMPUTE INFRASTRUCTURE

INVEST TO INCREASE CAPACITY AND CAPABILITY OF
DATA CENTRES AND HYPERSCALE COMPUTING

Cloud Native Architecture will demand increased capacity and computing power. This, in turn, will create a pressing need for more sophisticated data centres.

Initiatives such as high rise and floating data centres could mitigate Singapore’s land scarcity and hot climate.

Data centres built on hyperscale computing architecture would be another area of focus to meet the surge in demand.

Source – “The Future of Services”, IMDA, Dec 2018
PROPOSED APPROACH FOR SINGAPORE – HETEROGENEOUS COMPUTE INFRASTRUCTURE
WHY HETEROGENEOUS COMPUTE INFRASTRUCTURE?

SHIFT TOWARDS SPECIALIZED COMPUTE TO FUEL DEMANDS OF AI

SPECIAL PURPOSE CLOUD
- Google TPU
- Microsoft Brainwave
- Intel Nervana
- IBM Power AI
- Nvidia v100

AI CHIPS
- CPU
- GPU
- FPGA
- Custom ASICs

EDGE COMPUTE
- Hardware accelerators
- AI SOC

ARCHITECTURES
- Cluster compute
- HPC
- Neuromorphic
- Quantum compute

COMPLEXITY IN SOFTWARE
- Model tuning/optimisations specific to hardware
- Growing need for compilers to optimize based on deployment hardware
- Workload specific compute: Model training, inference

Reference – “Distributed Deep Learning Optimisations for Finance”, Geeta Chauhan, CTO SVSG
SHIFT TOWARDS SPECIALISED COMPUTE FOR AI

EXISTING PROCESSORS NOT ORIGINALLY DESIGNED FOR NEW AI APPLICATIONS

- General-purpose processors
- Sufficient for inference
- Serial processing less efficient than parallel processing

- Highly parallel, high performance
- Less efficient than FPGAs

- Reconfigurable
- Good for constantly evolving workloads
- Efficient

- Best performance
- Most energy and cost efficient
- Fully customisable

• Best performance
• Most energy and cost efficient
• Fully customisable

TRAINING RANK

INFERENC RANK

Sources –
“What is FPGA and Project Brainwave?”, Microsoft, Sep 2018
“AI-Optimised Chipsets, Part I”, Vertex Ventures, Mar 2018
SHIFT TOWARDS SPECIALISED COMPUTE FOR AI

PLAYERS DEVELOPING AI-OPTIMIZED HARDWARE

Key Observations

- At least **45 startups** are working on chipsets purpose-built for AI tasks.
- At least **5 of them** have raised more than USD 100M from investors.
- According to CB Insights, VCs invested more than **USD 1.5B** in chipset startups in 2017, nearly doubling the investments made 2 years ago.

Most startups seem to be focusing on ASIC chipsets at the edge and in the cloud/DC

FPGAs and other architectures also appear attractive to chipset startups

Sources – “AI-Optimised Chipsets, Part III”, Vertex Ventures, Aug 2018
SHIFT TOWARDS SPECIALISED COMPUTE FOR AI

EMERGING ARCHITECTURES TO ENABLE AI

“Three-way technology race to bring faster, easier, cheaper, and smarter AI”

• High Performance Computing is available today but so are new commercial versions of actual Quantum computers and Neuromorphic Spiking Neural Nets

• These two new entrants are going to revolutionize AI and deep learning starting now

- Data Science Central article

SHIFT TOWARDS SPECIALISED COMPUTE FOR AI

CONVERGENCE OF HPC & AI EXPECTED TO DRIVE HPC ADOPTION BY COMMERCIAL PLAYERS

HPC for Industrial and Commercial Applications

HPC and AI Will Converge

2x Digital data is doubling in size every two years, and by 2020 the digital universe will reach 44 zettabytes

Machine Learning

Big Data HPC

Deep Learning

28% believe HPC will allow them to scale computationally to build deep learning algorithms that can take advantage of high volumes of data

40% Reduction in error rates when 10x more data is being used in coordination with AI in speech recognition

• Driven by convergence of HPC and AI
• Performance expected to be an AI innovation and adoption driver
• Deep learning enabled by HPC

Source – Perspective on HPC-Enabled AI, Tim Barr, Sep 2017
SHIFT TOWARDS SPECIALISED COMPUTE FOR AI

HPC/AI CONVERGENCE – ENABLE TECH ADVANCEMENT

THE WORLD’S FASTEST SUPERCOMPUTER BREAKS AN AI RECORD

• Summit (Oak Ridge National Lab) powered deep learning experiment to detect weather patterns like cyclones output from climate simulations at record-breaking speeds

• Demonstrated
 - Scientific potential of adapting deep learning to supercomputers
 - Machine learning can benefit from more computing power

Source – “World’s Fastest Supercomputer Breaks AI Record”, Wired, Jan 2019
NEED FOR HETEROGENEOUS HYPERSCALE COMPUTE INFRASTRUCTURE TO ADDRESS DIVERSE NEEDS OF SERVICES 4.0 IN DIGITAL ECONOMY

LOGISTICS
MULTI-MODAL TRANSPORT

Trade offs: Item(s) delivered, time to delivery, cost of delivery, etc

COMPUTE INFRASTRUCTURE
“MULTI-MODAL” HETEROGENEOUS

CENTRALISED

DISTRIBUTED

Data Centre
Cloud
Edge Devices

CPU
GPU
FPGA
ASIC

INFOCOMM MEDIA DEVELOPMENT AUTHORITY
HETEROGENEOUS HYPERSCALE COMPUTING FOR SINGAPORE

1. PARTNERSHIP WITH LEADING HPC NATIONS

2. H-C-E” APPROACH TO HETEROGENEOUS COMPUTE INFRA DEV

- HPC
- CLOUD
- EDGE