
PHINEAS: An Embedded
Heterogeneous Parallel Platform

Nikhil Khatri

Student - PES University
Intern - LinkedIn

nikhilkhatri97@gmail.com

Nithin Bodanapu

Student - PES University
Intern - Couchbase

nithinbodanapu97@gmail.com

Dr. TSB Sudarshan

Dean of Research - PES University
sudarshan@pes.edu

114th March, 2019

Motivation

● PES University currently does not have a cluster computer
● Students of HPC classes do not have a practical environment in which to apply their

knowledge
● Machine learning, DIP and NLP are popular domains of research on campus.

○ Highly parallelizable
○ Frequently applied in embedded environments (Robots, embedded controllers)
○ No suitable hardware available for this task either

214th March, 2019

We need a parallel compute resource to
meet the university’s needs for

ML, DIP and NLP

in embedded environments.
314th March, 2019

Cluster requirements

● Power efficient
● Suitably parallel
● Physically small
● Individually performant compute nodes (For single threaded workloads)
● Low latency interconnect

414th March, 2019

Infrastructure requirements

● ARM based SoC
● 1 GB+ RAM
● Gigabit networking
● Efficient power supply
● Sufficient storage

514th March, 2019

NanoPi M1 Plus

● Allwinner H3
○ ARM Cortex A7 CPU (x4)
○ Mali 400 MP2 GPU @ 600MHz

● 8 GB eMMC storage + microSD slot
● Gigabit networking
● I/O

○ Video
○ Audio
○ GPIO

Networking
2 x 8 port gigabit switches

Power supply
2 x 40 Watt USB power supplies

614th March, 2019

714th March, 2019

Cluster architecture

● 2 stacks of 4 nodes each
● Each stack has

○ 4 x NanoPi M1 Plus
○ Gigabit network switch
○ 5 port 40 Watt USB power supply

● Each stack is entirely independent
● Stacks can be added or removed freely

(horizontal scaling)

Cost per stack: ₹ 16194 ~= $233

Dimensions: 25cm x 30cm x 30cm
(Mostly cabling)

Performance Benchmarks

1. Image convolution
2. Matrix multiplication (hybrid)
3. DNN training

814th March, 2019

Image convolution

● Distributed program using MPI to
count number of stars

● Master node reads in .TIF image
(12788 x 40000)

● Partitions image vertically, sends
to all nodes

● Each node runs
cv2.adaptiveThreshold on its
component

● Each node returns its local star
count

914th March, 2019

Matrix multiplication (hybrid)

● C = A x B
○ each has dimensions NxN

● A is partitioned by columns, B is
sent as a whole

● Each node forms one column of C
● Within each node, multiplication

is parallelised using OpenMP
○ Static scheduling
○ 1 or 4 threads per node

Multiplication speedup for 1000 x 1000 matrices

1014th March, 2019

Neural Network training

● Computation from each layer
distributed across nodes

● Both forward propagation, and
backpropagation are parallelised

● We see very good speedup even
with just two nodes

● A wider hidden layer results in
marginally better speedup

● Uses MPI4Py to distribute work

1114th March, 2019

Can our boards do more?

1214th March, 2019

Yes, with the GPU

Heterogeneous computation

● Our boards have Mali 400 MP2 GPUs
● These can be utilised through the OpenGL ES2.0 interface
● These have not been previously used for GPGPU computation
● This could increase the overall computational capability of the

platform

1314th March, 2019

OpenGL ES2.0

● Lightweight interface, meant for low intensity graphic

processing

● 2 shaders per program
○ Vertex shader

■ Applies location transforms to pixels in viewport

■ We use this to tell fragment shader about adjacent points

○ Fragment shader

■ Applies texture to triangles in the viewport

■ Use this to read input image, and modify display

1414th March, 2019

Example usage

● Image convolution using a 3x3 kernel

● Vertex shader is a passthrough to fragment shader

● Fragment shader performs computation and outputs data

through the gl_FragColor variable.

1514th March, 2019

Shaders

1614th March, 2019

GPU Neural Network Inferencing

● Neural networks are known to be a workload conducive to

GPU computation

● None of the common GPU ML libraries are compatible with

the OpenGL ES2.0 interface.

1714th March, 2019

DNN Shader

1814th March, 2019

Challenges & Possibilities

● OpenGL ES2.0 does not provide an easy way to get output

● Output is through one RGBA color per fragment

○ 8 bits per color

○ No existing way to encode a 32 bit float in this

● One GPU does not give best performance

○ Distributed GPU computation would make up for this

○ Would require Higher level interface than ES 2.0

1914th March, 2019

Conclusion

● Highly parallel computation can be achieved on an

inexpensive efficient cluster.

● The on-board GPU can be further leveraged to extract

performance

2014th March, 2019

Thank You

