Tuning Alya with READEX for Energy-Efficiency

2

Venkatesh Kannan¹, Ricard Borrell², Myles Doyle¹, Guillaume Houzeaux²

¹Irish Centre for High-End Computing (ICHEC) ²Barcelona Supercomputing Centre (BSC)

13-Mar-2019

SCAsia 2019

- Application Dynamism
 - HPC applications exhibit dynamic behaviour at run time
 - Dynamic workload characteristics
 - Dynamic resource requirements
- READEX
 - Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing
 - EU Horizon 2020 FETHPC project to develop tuning techniques and tool suite
 - Tune HPC stack (hardware, system-software and application parameters) during an application run to improve energy consumption and/or performance
- Alya
 - High performance computational mechanics application
 - Developed by EoCoE at BSC with hybrid parallelization (MPI, OpenMP, CUDA, OpenACC)
 - Presence in multiple European application benchmark suites

READEX Project and Tool Suite

Technische Universität Dresden/ZIH (Coordinator)

Norges Teknisk-Naturvitenskapelige Universitet

Technische Universität München

IT4Innovations, VSB-Technical University of Ostrava

Irish Centre for High-End Computing

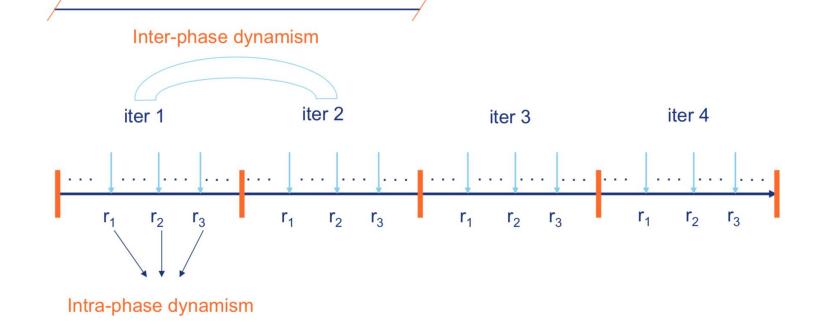
Intel Corporation SAS

Gesellschaft für numerische Simulation mbH

IT4Innovations

European Commission

Horizon 2020 European Union funding for Research & Innovation

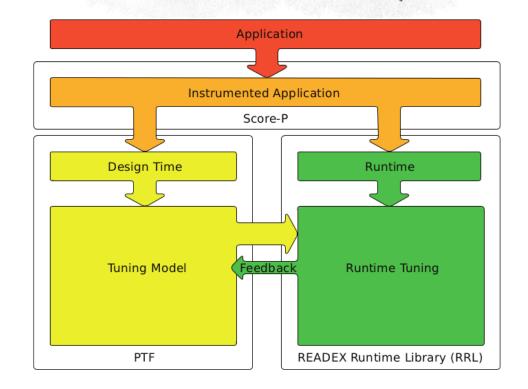


gns

READEX Tool Suite Dynamism Detection

13 section was

10


1

READEX Tool Suite Tuning Parameters

Level	Tuning Aspect	Tuning Parameter	Scope	
Hardware Parameters	CPU Frequency Controls	Core Frequency (DVFS)	Core	
		Uncore Frequency	Socket	
		Energy Performance Bias (EPB)	JUCKEL	
System Software Parameters	OpenMP Parallelism	Dynamic Concurrency Throttling	Drasses	
		Workload Scheduling Algorithm	Process	
Application Parameters	User-specified Code-paths	Decomposition Routines		
		Types of Solvers		
		Preprocessing Stiffness & Course-problem matrices	Application	

READEX Tool Suite Steps to Apply on a HPC Application

- 1. Application Instrumentation
 - Identify key application regions
- 2. Dynamism Detection
 - · Check application for exploitable dynamism
- 3. Design-Time Analysis
 - Perform experimental runs
 - Identify optimal configurations
 - Summarised in tuning model
- 4. Runtime Application Tuning
 - Production run of application
 - Apply optimal configurations from *tuning model*
 - (Update *tuning model* using *calibration* for new scenarios)

Alya HPC Application

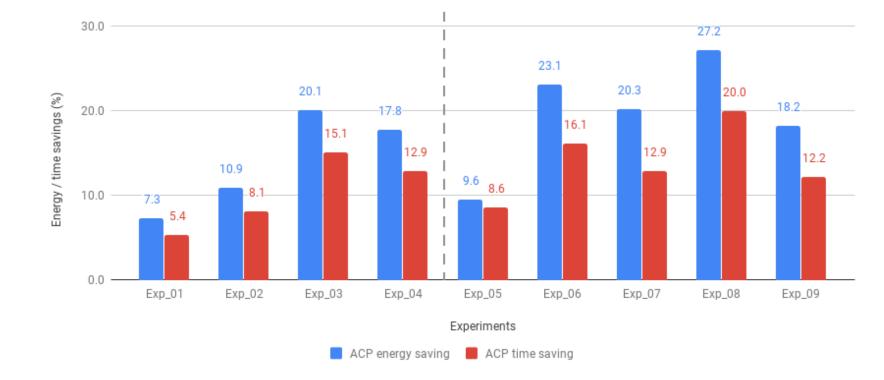
- Developed at BSC (Barcelona Supercomputing Centre)
- Simulation code system
 - High-performance computational mechanics
 - Hybrid parallelization (MPI, OpenMP, CUDA, OpenACC)
 - Present in industrial applications and European benchmark suites
- EoCoE (Energy oriented Centre of Excellence)
 - Renewable energy analysis (wind resource assessment)
 - Air quality simulation in cities
 - Full aircraft and turbine simulation for aeronautics
 - Cardiovascular and respiratory system simulation for biomechanics
 - And more

READEX on Alya Dynamism Detection

Significant region	information					
Region name	Min(t)	Max(t)	Time	Time Dev.(%Reg)	Ops/L3miss	Weight(%Phase
NSI_EIGEN_TIME_STER	P_ALL 0.234	0.245	2.360	1.4	115143011	5
PAR_BARRIER	0.000	1.074	31.029	0.0	0	65
DEFLCG	0.233	0.403	8.355	16.9	4183031	18
NSI_DOMMAS	0.216	0.216	2.159	0.0	200	5
Phase information						
Min	Max	Mean	Time	e Dev.(%	Phase)	Dyn.(% Phase)
4.45103	7.02546	4.76904	47.6	3904 0		53.9821
SUMMARY:						
=======						
Inter-phase dynamis	m due to variati	on of the exec	ution time o	f phases		
1 0				-		
Intra-phase dynamis DEFLCG	m due to time va	ariation(%) of	the followin	g important signif:	icant regions	
Intra-phase dynamis PAR_BARRIER DEFLCG	m due to variati	on in the comp	ute intensit	y of the following	important sig	mificant regions

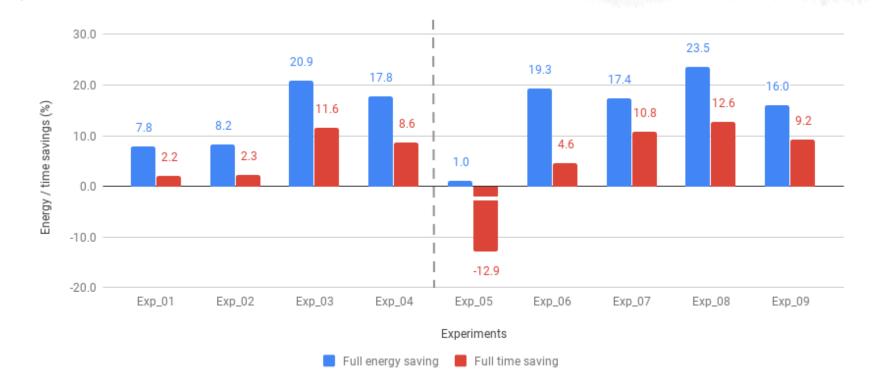
READEX on Alya Tuning Parameters

Level	Tuning Parameter	Range	Default
Hardware	CPU Core Frequency	1.2 GHz to 2.5 GHz; step 300 MHz	2.5 GHz
Parameters	CPU Uncore Frequency	1.2 GHz to 3.0 GHz; step 300 MHz	3.0 GHz
System Software Parameters	Number of Active OpenMP Threads	1 to <i>fill node</i> ; step 2 threads	Fill nodes
	RENUMBERING (Ordering used for local unknowns defined in vertices)	METIS, CUTHILL_MC_KEE	METIS
	GROUPS (# degrees of freedom of coarse system in Deflated CG)	100, 200, 400, 800, 1600, 3200	800
Application Parameters	COARSE_SOLVER (Direct solver used for coarse system in Deflated CG)	CHOLESKY, SPARSE	CHOLESKY
	ELEMENT_CHUNK (Elements chunk size used in OpenMP dynamic scheduling)	100, 200, 400, 600, 800, 1000	400
	SOLVER_CHUNK (Chunk size used in the OpenMP dynamic scheduling for solver)	100, 200, 400, 600, 800, 1000	400


Taurus cluster at TU Dresden

Intel Xeon CPU E5-2680 v3 processors

24-core dual-socket nodes


Experiment label	# of nodes	# of MPI processes	# of OpenMP threads	Tuning model
		per node	per process	
Exp_01	10	2	12	Exp_01
Exp_02	10	4	6	Exp_02
Exp_03	20	2	12	Exp _03
Exp_04	20	4	6	Exp_04
Exp_05	10	2	12	Exp_02
Exp_06	20	2	12	$\mathrm{Exp}_{-}02$
Exp_07	20	4	6	$\mathrm{Exp}_{-}02$
Exp_08	40	2	12	$\mathrm{Exp}_{-}02$
Exp_09	40	4	6	Exp_02

READEX on Alya Results (tuning application parameters)

READEX on Alya

Results (tuning hardware, system-software & application parameters)

Summary & Credits

- Current evaluations show that energy consumption and execution time savings are achievable
 - For Alya, between 5-25% on up to 40 node (960 core) runs
 - Application dependent; exploitable dynamism
 - Indicative of a promising line of action to better understand the reasons for the dynamisms in Alya
- Further investigation into source of dynamism and potential optimisations on extreme scale clusters

Myles Doyle ICHEC

Ricard Borrell BSC

Guillaume Houzeaux BSC