
Hideyuki JITSUMOTO*1, Yuya KOBAYASHI*3,
Akihiro NOMURA*1, Satoshi MATSUOKA*1*2

*1 Tokyo Institute of Technology, *2 RIKEN R-CCS,
*3 Degital Media Professionals Inc.

� Detecting Silent Data Corruption(SDC)
¡ Replication and comparison

¢ Additional computing resource

¡ Application Based Verification
¢ Additional verification calculations depend on each application

� Fault Injector
¡ Verify OS’s and applications’ resiliency toward SDC such as where

should be protect on software
¡ Verify performance of new SDC tolerance algorithms

Optimization of cost and performance of SDC tolerance

� Mainly random single bit error happened by radiations

� Error depends on memory module implementation
¡ Disturbance Error on DRAM

¢ Data corruption on cell which is the neighbor from manipulated cell.
¡ Deterioration on NVRAM

¢ The Cell become unreliable after a limited number of erase cycles.
� Error mechanism is not clear on next-gen. memory module and new

memory usage algorithm
¡ Hierarchical usage of different memory architecture
¡ 3D structured memory

h

Current fault injector supported random single bit error
¡ Other error corrected and detected by ECC -> new ECC, new device

Fault injector needs to consider about hardware specific error

� Hardware specific fault injection platform which can make
error depends on memory access pattern and memory state:
¡ emulates various hardware specific error by using memory access

pattern and memory state information
¡ intercepts memory access and execute user defined code:

¢ logging memory access pattern
¢ injecting error when error occasion condition is satisfied

¡ supporting tools for making flexible fault injection scenario and
analysis of the effects of fault

� Injection to physical hardware (neutron/heavy ion beam)
¡ Difficult to pinpoint SDC bits and timings
¡ Damage to hardware

� Injection by program modification (code snippet, LLVM)
¡ Difficult to emulate hardware specific fault

� Injection by Virtual Machine
¡ treats memory modules on guest machine as the process memory

on host machine
→ our work also use this method

� F-SEFI [Guen et al.]
¡ VM-based fault injector
¡ can intercept machine language instruction
¡ Inject error to CPU logical circuit, registers, memory modules

Difference: MH-QEMU has supporting tool for injecting fault to
memory module flexibly

¡ Real-time mapping an address used by a process on VM to physical
address and the reverse

¡ Inject error only to memory module (currently)
(MH-QEMU may implements on F-SEFI…)

� no damage to physical hardware
¡ VM-based

� emulating MSA faults flexibly without any effects into VM
¡ Injection of faults from host OS to VM (MM:memory mapper)
¡ Definition of memory access handler for each instruction for

memory state modification (MH: memory handler)
¡ Scheduling fault injection (FS: fault injection scheduler)

� supporting tools for injecting fault flexibly and analysis of the
effects of fault
¡ APIs for getting memory usage information of VM from host OS

(ADM: application-data mapper)

Guest OS

Application

VMM Memory Manager

Host OS Memory for
VMM

� Application accesses to the
VMM memory on host OS via
the guest OS

Guest OS

Application

VMM

MH

MM

Memory Manager

Host OS Memory for
VMM Shareable Memory Area

� Memory Handler (MH)
¡ How to occur errors

¢ Call for each memory access
¢ Recoding access pattern
¢ Checking condition for fault

injection
¢ Injecting fault if the condition is

satisfied

Guest OS

Application

VMM

MH

MM

Memory Manager

Host OS Memory for
VMM Shareable Memory Area

� Memory Mapper (MM)
¡ How to access VM memory from

host OS
¢ Change memory area from the area

managed by VMM to shareable area
(such as tmpfs)

¢ Host OS can operate VM’s memory
via the shareable area

Guest OS

Application

VMM

MH

MM

Memory Manager

Host OS Memory for
VMM Shareable Memory Area

� Ex. Error occurs frequent
accessed bit
¡ MH recodes access count
¡ MH checks access count for each

memory bit
¡ When access count become over

the threshold, MH modifies
shareable memory area via MM

1) Recode and Check

2) Inject error

3) Continue to access

� Application-Data Mapper (ADM)
converts application name to physical address and the reverse
¡ MH-QEMU can inject error to specified application on VM
¡ MH-QEMU can get application name from error-injected address
¡ ADM also supply VMM’s mapping information (physical-virtual)

� Fault Injection Scheduler (FS)
executes time-based events
enables/disables other MH-QEMU modules
¡ MH is high cost -> needs to apply on appropriate timing
¡ Time-based error injection

Fault
Injection

Scheduler

Guest OS

Application

MH-QEMU-based Access

VMM

MH

A
D

M

MM

Memory Manager

Host OS Memory for
VMM Shareable Memory Area

Memory Access

Fault Injection
Providing
Phys.-Virt. Mapping

MH-QEMU
modules

� Modified Tiny Code Generator on QEMU
¡ TCG = CPU virtualization module
¡ Insert MH calling code to load and store instruction

Guest Code Host Code

x86

ARM

MIPS

x86

ARM

MIPS

QEMU’s TCG

Intermediate Code

TLB
lookup

Load/Store

Page
Walk

TLB
lookup

Store

Page
Walk

TLB
lookup

Load

Page
Walk

MH Call

MH Call

Found

Not found

� OS information stored VM memory (Limitation: Linux)
¡ can get via MM without interacting guest OS

� Symbol table of kernel

Required OS Information
¡ Page table
¡ Process information
→ managed by list structure

All information can get from
kernel symbol by following the list connection

� Injecting error on frequent accessed
bit on specific application
¡ gets application address range
¡ counts memory access if accessed bit is

in the range

¡ checks access count
¡ recodes the overrun address for

post-analysis
¡ flips the bit on the overrun address
¡ Recode the process information for post-

analysis
¡ Turn off MH for performance

memory_access_handler(physaddr, virtaddr){
range ← ADM_get_heep_addr(target_name)
if (virtaddr is in range){
count[virtaddr]++

}
for(addr ← each range){
if (count[addr] >= threshold){
records addr
MM_flipbit(addr)
ADM_write_processinfo(target_name)
FS_turnoffMe()

}
}

}

HOST SERVER

CPU 2* Intel X5650 (2.67GHz, 6core/12thread) VT-x

Memory ECC DDR4 SDRAM 48GB

OS CentOS 7.1 (Kernel 3.10.0)

VM SERVER (8VM/HOST)

CPU x86_64 Architecture

Memory 512MB

OS Scientific Linux 7.4 (Kernel 3.10.0)

� Injecting Row-hammer fault to Modified NPB CG
¡ Row-hammer fault

¢ By frequent access to a specific memory row, surrounding
rows get data corruption

¢ Access count threshold = 1000, Error occasion rate = 5 x 10-10

¡ Modified NPB CG
¢ CG may have tolerance toward DC by iterative method
¢ Original NPB CG has constant loop -> continue the loop until

it converges

¡ Address Mapping rule: Intel 82955X-MCH

� 2443 runs

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io

Error in result(X); width = 5%

Abort: Detectable failed execution55% of execution returns almost correct
answer

Unknown set: inverse power method
does not have a local solution

Modified CG has some resiliency
toward row-hammer error

� Pickup 825 runs of the previous
evaluation

� Only protect BSS region
¡ Almost of data set to BSS…

0

50

100

150

200

250

300

of

 F
ai

lu
re

s

SDC
Benign
Abort

Specify protection area without
knowledge of CG algorithm

� NPB 3.3.1 class B with 8 processes
� Exec. time comparison between QEMU and MH-QEMU

¡ MM overhead is negligible
¡ Showing MH overhead

� Blank MH (calling only)

0
0.5

1
1.5

2
2.5

3
3.5

4

EP CG MG FT IS

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

(n
at

iv
e

Q
EM

U
=1

)

Benchmark

QEMU
MH-QEMU

� Develop MH-QEMU: Memory-state-aware fault injection
platform
¡ For evaluate resiliency toward hardware specific error

and effects of error on next-gen. hardware
¡ Easily implement flexible fault injection scenario on memory

module
¡ Demonstrate resiliency evaluation by modified NPB CG that has

iterative calculation

� Use appropriate application for demonstration
¡ NPB CG is not suit -> HPCG ?

� Reducing execution cost
¡ KVM and instruction level code insertion ? (dyinst, Intel PIN)

� Supporting other hardware
¡ CPU circuit/register

¢ Implement on F-SEFI ?

� Evaluating many applications about resiliency
¡ optimizing SDC detection cost

