Current provision & future directions at Pawsey Supercomputing Centre

Mark Gray and Jenni Harrison 12th March 2019

The Pawsey Supercomputing Centre is an unincorporated joint venture between

and proudly funded by

tional Research

Pawsey Supercomputing Centre

Supporting Australian Researchers

MAKING TOMORROW HAPPEN TODAY

National Reach

35,712 cores, 1.09 PFLOPS, Aries dragonfly interconnect

CRAY

Galaxy

9,440 CPU cores 64 K20X GPUs Aries dragonfly interconnect

PAWSE

Zeus Supercomputer

36

20 visualization nodes 44 Pascal GPUs for GPU computing 80 Xeon Phi nodes for many core jobs 1 TB large memory nodes 2,240 CPU cores for serial codes FDR/EDR Infiniband interconnect

sgi

sgi

DataDirect

supercomputing centre

88

sgi

sgi

65 PB Migrating Disk and Tape

Nimbus Research Cloud

3000 Cores, OpenStack, Sahara, Volta GPUs

1

Data Storage

•

1

Usage by science domain 2019

- Radio Astronomy
- Geosciences
- Mathematical Sciences
- Physical Sciences (exc. radio astro)
- Chemical Sciences
- Earth Sciences (exc. Geosciences)
- Environmental Sciences
- Biological Sciences
- Agricultural And Veterinary Sciences
- Information And Computing Sciences
- Engineering
- Technology
- Medical And Health Sciences
- History and Archaeology

Real-time data ingest

ASKAP TELESCOPE SERVICE

Real-time data ingest

ARTEMIS: A neonatal Internet of Things.

Future outlook - Capital Investment

- \$70 million capital refresh
- ~ 2/3 for compute, 1/3 for storage and network
- Few small procurements out to market (multiple areas)
- Collaborations commencing with institutions

Collaborative networks - Easy?

- Hard to achieve
- Even harder to sustain
- Often multiple challenges
- Many diverse stakeholders
- Complex financial models
- Benefits diverse

Should we still try? Future HPC dictates it

Future of HPC

- Unified model: Converged architecture
- Software defined infrastructure
- Machine learning & Al
- Integrated workflows
- New scientific domains
- Dynamic, real-time scheduling
- Safely handling sensitive data
- Synergies: solve large scale science problems (SKA, LHC)

Challenges cont

Solutions (?)

- Storage
- Heterogeneous
 workflows
- Data Management
- Development workloads
- Security
- Quality of Service

- Hybrid cloud
- Federation
- Workflow mgmt.
- Interactive Vis.
- RUCIO
- Meerkat
- SchedMD/Elastic
 workloads
- Smart contracts/blockchain
- Re-frame
- Ganglia
- Containers
- Secondment

Questions?

