

New approach to find biological adaptation rules using CFD and Genetic Algorism

Ryutaro & Masako HIMENO RIKEN

March 12, 2019

Background(1):Forward Problems

• CFD has been used to solve flow fields under certain initial conditions and boundary conditions.

Background(2): Inverse Problems

- Genetic Algorithm gives us optimizing shapes under some conditions.
- Adaptation/growth of organ under some conditions should be solved using GA

-> When optimizing organ shape under several sets of some fluid dynamic factors using GA and compare the shape with real shape, we may know which set of factors gives the most similar shape to real one.

-> this is the way how to find unknown adaptation factors: solving Inverse problem March 12, 2019

Region we should apply this method

Transition of mortality rate in the major cause of death in Japan

(Population Survey Report: Ministry of Health and Welfare)

aneurysm

A

stenosis

March 12, 2019

We know artery adaptation only at strait part

Check how the new approach can work well at the artery development

Reported possible factors related with blood flows near bifurcation We do not know normal adaptation of blood tube

·Low WSS ·High WSS

March 12, 2019

stenosis

Proposed method

Artery shapes adapt optimally to some kinds of fluid dynamics factors. This optimization problem is solved using CFD and genetic algorithm(GA).

Multi-objective optimization

Multi Objective Genetic Algorism (GA)

March 12, 2019

2nd level: parallelization of GA jobs

Details of HOKUSAI GreatWave

Determinant of artery shape

Computation target

Carotid artery bifurcation

Carotid bulb

Internal carotid

artery (ICA)

Carotid

Common carotid

artery (CCA)

bulb

- Large variations of the size of carotid bulb of individuals

External carotid

artery (ECA)

case A

age:38

What are

common factors?

March 12, 2019

Blood flow analysis

CFD analysis

- VOF and QUICK schemes
- Diameter at inlet was normalized as 1.0.
- Blood tube not elastic
- Re=1000
- Pulsatile flow

Error in calculated WSS against their theoretical values for three voxel sizes

0.1

800,000

2hours

Ax = 0.2

100,000

7min.

March 12, 2019

SCAsia2019

No. of voxel

Calculation

time(32CPU)

0.05

7,000,000

32hours

Step1 Optimized parameter: radius only		case age:	: A 38	B 47	C 81	D 56	E 22	F 23	G 22
Combination of summed factors				V	Y		V	N	h
1	max WSS, surfac	e area	Y	Y	Y	Y	Y	Y	Y
2	max WSS, min W	/SS	n	n	Y	n	n	n	n
3	wssg, surface a	rea	n	Y	n	n	n	Y	Y
4	WSSG, min WS	SS	n	n	n	n	n	n	Y
5	wsstg, surface a	area	n	n	n	Y	Y	n	Y
6	WSSTG, min W	/SS	n	n	n	n	Y	Y	Y

Step 2 radius and center line Y: optimized shape n:not optimized shape

max WSS, surface area Y Y Y Y Y Y Y Y

March 12, 2019

Abdominal aortic bifurcation •Abdominal aneurysm often occurs. Variation •Bifurcation angle •Degree of asymmetry of blanches

Second bifurcation target

shape III

shape V **69**

Assumed factors

- Minimize max WSSG
- Maximize min WSS

		Abdominal artery bifurcation								
	case	I	П	Ш	IV	V	Summary			
Cor	nbination of summed factors					(average)	Carotid artery (7cases			
1st s	step Optimized parame	ter: radi	us only							
F1	max-WSS, surface area	0.0012	0.0027	0.0103	0.0092	0.0029	0.0052	0.0054		
F2	max-WSS, min-WSS	0.0162	0.4115	0.6806	0.0535	0.0415	0.2401	0.0414		
F3	WSSG, surface area	0.0065	0.0064	0.0324	0.0278	0.0227	0.0191	0.0221		
	— Center lin	e of blanch	nes	0.2514	0.0978	0.1808	0.1360	0.0679		
	were defined		ed		0.0536	0.0125	0.0259	0.0202		
blanch2	blanch2 blanch1 Independentity.			0.3175	0.1653	0.0500	0.1349	0.0669		
2nd	step Optimized parameter: radius and center line									
F1	max-WSS, surface area	0.0023	0.0001	0.0998	0.0004	0.0757	0.0356	0.0067		
				1		1				
12, 2019			SCASI	SCORINGINAL shape is not optimized one!						

Summary

Optimization is usually performed minimizing/maximizing certain target factors under certain conditions. We examined if it can be used as unknown factor searching method of biological adaptation.

We tested it using CFD and GA to artery adaptation at two bifurcations: carotid and abdominal bifurcation.

Results

- Combination of minimizing both max time-averaged WSS and local radius is the best in tested factors as well as at two bifurcation part.
- This approach is very useful to find new things.