

• Agenda

- Why water cooling is becoming important?
- Server Power Trends
- Performance Impacts
- OPEX effects

Why do we have a problem?

Higher TDP Processors

Data Center
Power/Space
limits

High Electricy Cost

Performance is Power/Thermal capped

Waste Heat Reuse

Lenovo

Power/Heat is changing the Datacenter Paradigm

Intel Xeon Server processor history

Release date	Code	Processor	core/chip	TDP(W)	Spec FP	Spec_fp Rate
2006/6/26	Woodcrest	Intel Xeon 5160	2	80	17.7	45.5
2007/11/12	Harpertown	Intel Xeon x5460	4	120	25.4	79.6
2009/3/30	Nehalem	Intel Xeon x5570	4	95	43.8	202
2010/3/16	Westmere-EP	Intel Xeon x5690	6	130	63.7	273
2012/5/1	SandyBridge	Intel Xeon E5-2690	8	135	94.8	507
2014/1/9	IvyBridge	Intel Xeon E5-2697v2	12	130	104	696
2014/9/9	Haswell	Intel Xeon E5-2699v3	18	145	116	949
2015/3/9	Bradwell	Intel Xeon E5-2699v4	22	145	128	1160
2017/7/11	Skylake	Intel Xeon Platinum 8180	28	205	155	1820

Processor performance trend

- Spec_fp rate with 2 processors/node has increased 40 times the past 11 years (2006 2017).
- The number of cores on the chip increase 14 times.
- After being flat, since 2014 TDP increases linearly with Spec_fp rate.
- Current maximum TDP is 205W. Knighs Mill Xeon phi processor will be 305 W

To sustain increased performance servers will have to be less dense or use new cooling technology

Power Density Ever Increasing

Eli Lilly and Company

(#75, Nov 2006) BladeCenter HS21 w/ Xeon 5160 2C 3.0GHz 80W

- Rack: 56 Nodes, 224 Cores
- SPECfp2006 Rate: 2.548
- RackPower: ~20kW

BSC – Mare Nostrum

(#16, Nov 2017) Lenovo SD530 w/ Xeon 8160 24C 2.1GHz 150W

- Rack: 72 Nodes, 3.456 Cores
- SPECfp2006 Rate: 110.160
- RackPower: ~33kW

LRZ – SuperMUC-NG

(#?, Nov 2018) Lenovo SD650 w/ Xeon 8174 24C 3.1GHz 240W mode

- Rack: 72 Nodes, 3.456 Cores
- SPECfp2006 Rate: tbc
- RackPower: ~46kW

Ĵ

How much heat can your DataCenter extract from a 19" rack?

• The Future of Power and Performance

- Maintaining Moore's Law + increased competition is resulting in higher processor power
- Increasing processor power, memory, NVMe adoption and I/O power growth will drive packaging and feature tradeoffs
- Rack power levels will challenge the data center power delivery, heat handling, air flow delivery and floor loading
- Smart thermal designs including water will become the norm

Silicon Roadmap Impacts on Air Cooling

- 100% of input power converted to heat: Exhaust Temp = Power/Airflow + Inlet Temp
- System airflow cannot keep up with silicon power increases: max 40-80 cfm per dense node
- Feature set tradeoffs will be required to fit in node thermal envelope:
 - Move I/O to front with Storage to reduce preheat issues?
 - Reduce superset of CPU and Memory power support: reduce # of DIMMs with high TPD CPUs?
 - Industry move to Direct Water Cooing?

Server Power Trends – ASHRAE* 2015-2020

Market Requirements force IT manufacturers to maximize performance/volume creating high heat load/rack

Pri 10 - 5 (27 Mg)	No. of Sockets	Heat Load / Chassis (watts)		Heat Load / 42U Rack			Increase	
Height		2010	2015	2020	2010	2015	2020	2010 to 2020
10	1 s	255	290	330	10,710	12,180	13,860	29%
	2 s	600	735	870	25,200	30,870	36,540	45%
	4s	1,000	1,100	1,200	42,000	46,200	50,400	20%
2U	2 s	750	1,100	1,250	15,750	23,100	26,250	67%
	4s	1,400	1,800	2,000	29,400	37,800	42,000	43%
4U	2s	2,300	3,100	3,300	23,000	31,000	33,000	43%
7U (Blade)	2s	5,500	6,500	7,500	33,000	39,000	45,000	36%
9U (Blade)	2 s	6,500	8,000	9,500	26,000	32,000	38,000	6%
10U (Blade)	2 s	8,000	9,000	10,500	32,000	36,000	42,000	31%

*ASHRAE = American Society of Heating, Refrigerating, and Air-Conditioning Engineers. These rack heat loads will result in increased focus on improving data center ventilation solutions and localized liquid cooling solutions

Liquid Cooling Status

- Adoption of liquid cooling to date has been primarily driven by energy efficiency improvements and heat recovery
- Intel Purley Skylake 205W CPU TDPs has increased water cooling use to maintain density and for chassis reuse (e.g. Dell C6420 uses CoolIT for 205W TDP CPUs)
- High power CPU/GPU roadmaps will accelerate the adoption of liquid cooling
 - Component power is exceeding what can be cooled using forced convection at a node level
 - Rack level power is exceeding what can be cooled using forced convection at a data center level

Node Level Cooling Limits

- Component thermal requirements are exceeding what can be air cooled
 - Solutions with large heat sinks (≥ 2U) are possible, but with exponential fan power and acoustics

Rack Level Limits

• Node power density cannot be cooled at rack level = Partial rack population or rack level power capping may be required

• Rack Power by Segment through 2020

Co-location

Enterprise

Cloud

(2x120W TDP CPU, 12x16GB RDIMM, 2xSATA HDDs, 2x10GbE)

(A HDDs, 2x10GbE)

(2x150W TDP CPU, 12x32GB RD	
Min 8 KW	Ma

	DIMO FOLGIM	
2x205W TDP CPU, 12x32GB RDIM	M, 2x SATA SDDs, 2x10GbE,	1xOPA)
550W per node/2	500W per chassis	

	Max 12 KW
	1
	4
	4
	1U 1U
	1U
	1U 1U
	1U
	1Ü 1U
	1U
1U	10
1U 1U	1U 1U
1U 1U	1U
1U	1Ŭ 1U
	1U
1U	1U 1U
	1U
1Ü 1U	1Ú 1Ú
1Ü 1Ü	1U
1U	1U 1U
1Ü 1U 1U 1U 1U	1U
1U 1U	1Ŭ 1U
10	1U
1U 1U	1U 1U
iŭ	1U 1U

(Extern 15) of 0,2 mozes (Summ, ox ox (X11550, Externs))				
Min 10 KW	Max 20 KW			
	1U			
	10			
	1U			
	1U 1U			
	1U			
	1U			
	1U 1U			
	10			
	1U			
	1U			
	1U 1U			
	1U			
	1U			
	1U 1U			
	1Ü			
	1U			
1U	1U 1U			
10	1U			
1U	1U			
1U 1U	1U 1U			
10	10			
1U	1U			
1Ŭ 1U	1U 1U			
10	10			
1U	1Ü			
10	10			
1U 1U	1U 1U			
1U	1U			
1U 1U	1U 1U			
1U 1U	10			
1U	1U			
10	1U 1U			
10	10			

Min 8 KW	Max 38 KW
	2U/4N
2U/4N	2U/4N

Air Cooled 34KW	DWC 50KW+	
	2U/4N	
4	2U/4N	
-	2U/4N	
-	2U/4N	
2U/4N	2U/4N	

Power per node increasing due to:

- Step in CPU power to maintain Moore's law (Xeon \rightarrow 235W, Xeon Phi \rightarrow 400W) and increased competition (AMD Naples@180W, Nvidia GPU@300W)
- Increase in memory count (32 DIMMs per 2S) and adoption of NVMe for Storage and Memory

Cooling comparison

Air Cooled

- Standard air flow with internal fans
- Fits in any datacenter
- Maximum flexibility
- Broadest choice of configurable options supported
- Supports Native Expansion nodes (Storage NeX, PCI NeX)

PUE ~2 - 1.5

ERE ~2 - 1.5

Choose for broadest choice of customizable options

Air Cooled with Rear Door Heat Exchangers

- Air cool, supplemented with RDHX door on rack
- Uses chilled water with economizer (18°C water)
- Enables extremely tight rack placement

PUE ~1.4 - 1.2

ERE ~ 1.4 - 1.2

Choose for balance between configuration flexibility and energy efficiency

Direct Water Cooled

- Direct water cooling with no internal fans
- Higher performance per watt
- Free cooling (45°C water)
- Energy re-use
- Densest footprint
- Ideal for geos with high electricity costs and new data centers
- Supports highest wattage processors

PUE ~ 1.1

ERE < < 1 with hot water

Choose for highest performance and energy efficiency

PUE

- Power usage effectiveness (PUE) is a measure of how efficiently a computer data center uses its power;
- Ideal value is 1.0
- Does not take into account how IT power can be optimised

ITUE

- IT power effectiveness (ITUE) measures how the node power can be optimised
- Ideal value is 1.0

ERE

- Energy Reuse Effectiveness
 measures how efficient a data center
 reuses the power dissipated by the
 computer
- ERE is the ratio of total amount of power used by a computer facility to the power delivered to computing equipment.
- An ideal ERE is 0.0. If no reuse, ERE= PUE

Value of Water Cooling Technology from Lenovo

Lower processor power consumption (~ 6%)

Higher TDP processor over air-cooled

Higher density

No fan per node (~ 4%)

Constant Turbo Mode without power penalty (~7%)

With DWC at 45°C, we assume free cooling all year long (~ 20%)

- 90 % of heat goes to hot water leading to free cooling remaining goes to cold water

TCO: return on investment for DWC vs RDHx (*)

- New data centers: Water cooling has immediate payback.
- Existing air-cooled data center payback period strongly depends on electricity rate
- (*): work underway to introduce adsortion chillers into the TCO

ThinkSystem Dense Optimized portfolio

Ready to adapt when you are, an ultra-dense hyperscale system for customers seeking the power and scalability to drive large, complex environments such as HPC.

More in less

Innovative chassis enables greater density for Hyperconverged workloads;
 Designed for dense HPC architectures; Future proof with 3D XPoint

Ready to adapt

 Widest range of processors in a dense form factor; Max storage with 48TB of capacity; Stackable node design supports GPUs and specialized IO adapters

Modularity to transform

 Disaggregated IO design allows for multiple fabrics; Scalable management design simplifies infrastructure costs; Front and rear access for easy serviceability

ThinkSystem SD530/D2 Enclosure

Lenovo NeXtScale nx360 M5 WCT

Analytics

Big Data

High Performance Computing

Modeling & Simulation

Scientific

Summary

- Per Server power requirements are trending upwards making water cooling <u>necessary</u> in the future.
- Direct Water Cooling Technology from Lenovo can greatly reduced the overall OPEX cost burden
- Reduction in OPEX is dependent on the cost of energy per datacenter
 - Easier to recover in new datacenters that are building out with water cooling
 - Fluctuates greatly in existing hybrid datacenters
- Processing power in water-cooling servers is greater than air due to heat-transfer efficiency
 - Can run 100% of time in turbo mode

GROWTH

SOLUTIONS

SCALE

INNOVATION

APPLICATION

AWARENESS

