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Spark within the Big Data ecosystem
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Quick facts

Apache spark 101

▪ In a nutshell:  Spark is a data analysis platform with implicit data parallelism and fault-tolerance
▪ Initial release: May, 2014
▪ Originally developed at UC Berkeley’s AMPLab
▪ Donated as open source to the Apache Software Foundation
▪ Most active Apache open source project

▪ 50% of production systems are in public clouds

▪ Notable users:
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Hardware acceleration in Big Data/Machine 
Learning platforms
▪ Hardware acceleration adoption is continuously growing
▪ GPU integration is now standard
▪ FPGA/ASIC integration is spreading fast

▪ RDMA is already integrated in mainstream code of popular frameworks:
▪ TensorFlow
▪ Caffe2
▪ CNTK

▪ Now it’s Spark’s and Hadoop’s turn to catch up
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What Is RDMA?

▪ Stands for “Remote Direct Memory Access” 
▪ Advanced transport protocol (same layer as TCP and UDP)
▪ Modern RDMA comes from the Infiniband L4 transport specification.
▪ Full hardware implementation of the transport by the HCAs.

▪ Remote memory READ/WRITE semantics (one sided) in 
addition to SEND/RECV (2 sided) 
▪ Uses Kernel bypass / direct user space access
▪ Supports Zero-copy 

▪ RoCE: RDMA over Converged Ethernet 
▪ The Infiniband transport over UDP encapsulation.
▪ Available for all Ethernet speeds 10 – 100G
▪ Growing cloud support

▪ Performance
▪ Sub-microsecond latency.
▪ Better CPU utilization.
▪ High Bandwidth.
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Spark’s Shuffle 
Internals
Under the hood
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MapReduce vs. Spark

▪ Spark’s in-memory model completely changed how shuffle is done
▪ In both Spark and MapReduce, map output is saved on the local disk (usually in buffer cache)
▪ In MapReduce, map output is then copied over the network to the destined reducer’s local disk
▪ In Spark, map output is fetched from the network, on-demand, to the reducer’s memory

…

…

Map Reduce

Map Reduce

Memory-to-network-to-memory? RDMA is a perfect fit!
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Spark’s Shuffle Basics
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Shuffle Read Protocol
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The Cost of Shuffling

▪ Shuffling is very expensive in terms of CPU, RAM, disk and network IOs

▪ Spark users try to avoid shuffles as much as they can

▪ Speedy shuffles can relieve developers of such concerns, and simplify applications
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SparkRDMA Shuffle 
Plugin
Accelerating Shuffle with RDMA
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Design Approach

▪ Entire Shuffle-related communication is done with RDMA
▪ RPC messaging for meta-data transfers
▪ Block transfers

▪ SparkRDMA is an independent plugin
▪ Implements the ShuffleManager interface
▪ No changes to Spark’s code – use with any existing Spark installation

▪ Reuse Spark facilities
▪ Maximize reliability
▪ Minimize impact on code

▪ RDMA functionality is provided by “DiSNI”
▪ Open-source Java interface to RDMA user libraries
▪ https://github.com/zrlio/disni

▪ No functionality loss of any kind, SparkRDMA supports:
▪ Compression
▪ Spilling to disk
▪ Recovery from failed map or reduce tasks

https://github.com/zrlio/disni
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ShuffleManager Plugin

▪ Spark allows for external implementations of ShuffleManagers to be plugged in
▪ Configurable per-job using: “spark.shuffle.manager”

▪ Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the 
entire Shuffle process to the new component

▪ SparkRDMA utilizes this interface to introduce RDMA in the Shuffle process

SortShuffleManager RdmaShuffleManager
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SparkRDMA Components

▪ SparkRDMA reuses the main Shuffle 
Writer implementations of mainstream 
Spark: Unsafe & Sort

▪ Shuffle data is written and stored 
identically to the original 
implementation

▪ All-new ShuffleReader and 
ShuffleBlockResolver provide an 
optimized RDMA transport when blocks 
are being read over the network
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Benefits

▪ Substantial improvements in:
▪ Block transfer times: latency and total transfer time
▪ Memory consumption and management
▪ CPU utilization

▪ Easy to deploy and configure:
▪ Supports your current Spark installation
▪ Packed into a single JAR file
▪ Plugin is enabled through a simple configuration handle
▪ Allows finer tuning with a set of configuration handles

▪ Configuration and deployment are on a per-job basis:
▪ Can be deployed incrementally
▪ May be limited to Shuffle-intensive jobs
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Results
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Performance Results: TeraSort

Testbed:
▪ HiBench TeraSort
▪ Workload: 175GB 

▪ HDFS on Hadoop 2.6.0
▪ No replication

▪ Spark 2.2.0
▪ 1 Master
▪ 16 Workers
▪ 28 active Spark cores on each node, 

420 total

▪ Node info:
▪ Intel Xeon E5-2697 v3 @ 2.60GHz
▪ RoCE 100GbE
▪ 256GB RAM
▪ HDD is used for Spark local 

directories and HDFS
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Performance Results: GroupBy

Testbed:
▪ GroupBy
▪ 48M keys
▪ Each value: 4096 bytes
▪ Workload: 183GB 

▪ Spark 2.2.0
▪ 1 Master
▪ 15 Workers
▪ 28 active Spark cores on each node, 

420 total

▪ Node info:
▪ Intel Xeon E5-2697 v3 @ 2.60GHz
▪ RoCE 100GbE
▪ 256GB RAM
▪ HDD is used for Spark local 

directories and HDFS
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Coming up next: 
HDFS+RDMA
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HDFS+RDMA

▪ All-new implementation of RDMA acceleration for HDFS
▪ Implements a new DataNode and DFSClient
▪ Data transfers are done in zero-copy, with RDMA

▪ Lower CPU, lower latency, higher throughput
▪ Efficient memory utilization

▪ Initial support:
▪ Hadoop: HDFS 2.6
▪ Cloudera: CDH 5.10
▪ WRITE operations over RDMA
▪ READ operations still carried over TCP in this version

▪ Future:
▪ READ operations with RDMA
▪ Erasure coding offloads on HDFS 3.X
▪ NVMeF



25© 2018 Mellanox Technologies

HDFS+RDMA

▪ Performance results: DFSIO - TCP vs. RDMA
▪ CDH 5.10
▪ 16 x DataNodes, 1 x NameNode
▪ Single HDD per DataNode
▪ RoCE 100GbE

▪ Up to x1.25 speedup in total runtime
▪ Up to x1.43 in throughput
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Roadmap
What’s next
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Roadmap

▪ SparkRDMA v1.0 GA is available at https://github.com/Mellanox/SparkRDMA
▪ Quick installation guide
▪ Wiki pages for advanced settings

▪ SparkRDMA v2.0 GA – April 2018
▪ Significant performance improvements
▪ All-new robust messaging protocol
▪ Highly efficient memory management

▪ HDFS+RDMA v1.0 GA – Q2 2018
▪ WRITE operations with RDMA

https://github.com/Mellanox/SparkRDMA
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Thank You


