
1© 2018 Mellanox Technologies

SC Asia 2018
Ido Shamay

Spark Over RDMA:
Accelerate Big Data

3© 2018 Mellanox Technologies

Spark within the Big Data ecosystem

Apache Spark - Intro

Data Sources
Data

Acquisition
/ ETL

Data
Storage

Data
Analysis /

ML
Serving

4© 2018 Mellanox Technologies

Quick facts

Apache spark 101

▪ In a nutshell: Spark is a data analysis platform with implicit data parallelism and fault-tolerance
▪ Initial release: May, 2014
▪ Originally developed at UC Berkeley’s AMPLab
▪ Donated as open source to the Apache Software Foundation
▪ Most active Apache open source project

▪ 50% of production systems are in public clouds

▪ Notable users:

5© 2018 Mellanox Technologies

Hardware acceleration in Big Data/Machine
Learning platforms
▪ Hardware acceleration adoption is continuously growing
▪ GPU integration is now standard
▪ FPGA/ASIC integration is spreading fast

▪ RDMA is already integrated in mainstream code of popular frameworks:
▪ TensorFlow
▪ Caffe2
▪ CNTK

▪ Now it’s Spark’s and Hadoop’s turn to catch up

6© 2018 Mellanox Technologies

What Is RDMA?

▪ Stands for “Remote Direct Memory Access”
▪ Advanced transport protocol (same layer as TCP and UDP)
▪ Modern RDMA comes from the Infiniband L4 transport specification.
▪ Full hardware implementation of the transport by the HCAs.

▪ Remote memory READ/WRITE semantics (one sided) in
addition to SEND/RECV (2 sided)
▪ Uses Kernel bypass / direct user space access
▪ Supports Zero-copy

▪ RoCE: RDMA over Converged Ethernet
▪ The Infiniband transport over UDP encapsulation.
▪ Available for all Ethernet speeds 10 – 100G
▪ Growing cloud support

▪ Performance
▪ Sub-microsecond latency.
▪ Better CPU utilization.
▪ High Bandwidth.

App
buffer

Sockets

TCP/IP

Driver

Network Adapter

C
o
n
tro

l

DMA

D
a
ta

Kernel

Context

7© 2018 Mellanox Technologies

Spark’s Shuffle
Internals
Under the hood

8© 2018 Mellanox Technologies

MapReduce vs. Spark

▪ Spark’s in-memory model completely changed how shuffle is done
▪ In both Spark and MapReduce, map output is saved on the local disk (usually in buffer cache)
▪ In MapReduce, map output is then copied over the network to the destined reducer’s local disk
▪ In Spark, map output is fetched from the network, on-demand, to the reducer’s memory

…

…

Map Reduce

Map Reduce

Memory-to-network-to-memory? RDMA is a perfect fit!

9© 2018 Mellanox Technologies

Spark’s Shuffle Basics

Map

Reduce task

M
a
p

R
e
d
u
c
e

Map

Map

Map

Map

Input Map output

File

File

File

File

File

Driver

Reduce task

Reduce task

Reduce task

Reduce task

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks

10© 2018 Mellanox Technologies

Shuffle Read Protocol

Shuffle Read

Driver

Reader

Writer

1

2

3

7

4

5

6

Request Map

Statuses

Send back Map

Statuses

Request blocks

from writers

Locate blocks, and

setup as stream

Request blocks

from stream, one

by one

Group block

locations by writer

Locate block, send

back

8

Block data is now

ready

11© 2018 Mellanox Technologies

The Cost of Shuffling

▪ Shuffling is very expensive in terms of CPU, RAM, disk and network IOs

▪ Spark users try to avoid shuffles as much as they can

▪ Speedy shuffles can relieve developers of such concerns, and simplify applications

12© 2018 Mellanox Technologies

SparkRDMA Shuffle
Plugin
Accelerating Shuffle with RDMA

14© 2018 Mellanox Technologies

Design Approach

▪ Entire Shuffle-related communication is done with RDMA
▪ RPC messaging for meta-data transfers
▪ Block transfers

▪ SparkRDMA is an independent plugin
▪ Implements the ShuffleManager interface
▪ No changes to Spark’s code – use with any existing Spark installation

▪ Reuse Spark facilities
▪ Maximize reliability
▪ Minimize impact on code

▪ RDMA functionality is provided by “DiSNI”
▪ Open-source Java interface to RDMA user libraries
▪ https://github.com/zrlio/disni

▪ No functionality loss of any kind, SparkRDMA supports:
▪ Compression
▪ Spilling to disk
▪ Recovery from failed map or reduce tasks

https://github.com/zrlio/disni

15© 2018 Mellanox Technologies

ShuffleManager Plugin

▪ Spark allows for external implementations of ShuffleManagers to be plugged in
▪ Configurable per-job using: “spark.shuffle.manager”

▪ Interface allows proprietary implementations of Shuffle Writers and Readers, and essentially defers the
entire Shuffle process to the new component

▪ SparkRDMA utilizes this interface to introduce RDMA in the Shuffle process

SortShuffleManager RdmaShuffleManager

16© 2018 Mellanox Technologies

SparkRDMA Components

▪ SparkRDMA reuses the main Shuffle
Writer implementations of mainstream
Spark: Unsafe & Sort

▪ Shuffle data is written and stored
identically to the original
implementation

▪ All-new ShuffleReader and
ShuffleBlockResolver provide an
optimized RDMA transport when blocks
are being read over the network

RdmaShuffleManager
SortShuffleWriter

UnsafeShuffleWriter

W
ri

te
rs

RdmaShuffleReader

RdmaShuffleBlockResolver

RdmaWrapperShuffleWriter

SortShuffleManager SortShuffleWriter

UnsafeShuffleWriter

BypassMergeSortShuffleWriter

W
ri

te
rs

BlockStoreShuffleReader

IndexShuffleBlockResolver

17© 2018 Mellanox Technologies

Shuffle

Read

Driver

Reader

Writer

1

2

3

7

4

5

6

Request Map

Statuses

Send back Map

Statuses

Request blocks

from writers

Locate blocks, and

setup as stream

Request blocks

from stream, one

by one

Group block

locations by writer

Locate block, send

back

8

Block data is now

ready
RDMA-Read blocks

from writers

No-op on writer

HW offloads

transfers

5

Block data is now

ready

Shuffle Read Protocol – Standard vs. RDMA

18© 2018 Mellanox Technologies

Shuffle Read

Driver

Reader

Writer

1

2

3

7

4

5

6

Request Map

Statuses

Send back

Map Statuses

Request

blocks from

writers

Locate blocks,

and setup as

stream

Request blocks

from stream,

one by one

Group block

locations by

writer

Locate block,

send back

8

Block data is

now ready

Shuffle Read

Driver

Reader

Writer

1

2

3 4 6

Request Map

Statuses

Send back

Map Statuses

Group block

locations by

writer

RDMA-Read

blocks from

writers

No-op on writer HW

offloads transfers

5

Block data is

now ready

S
ta

n
d
a
rd

R
D

M
A

Server-side:

✓ 0 CPU

✓ Shuffle transfers are not

blocked by GC in executor

✓ No buffering

Client-side:

✓ Instant transfers

✓ Reduced messaging

✓ Direct, unblocked access to

remote blocks

Reader

Writer 7

4

5

6

Request blocks

from writers

Request blocks

from stream, one

by one

Locate block,

send back

8

Block data is now

ready

Reader

Writer

4 6

RDMA-Read

blocks from

writers

No-op on writer

HW offloads

transfers

5

Block data is now

ready

Locate blocks,

and setup as

stream

19© 2018 Mellanox Technologies

Benefits

▪ Substantial improvements in:
▪ Block transfer times: latency and total transfer time
▪ Memory consumption and management
▪ CPU utilization

▪ Easy to deploy and configure:
▪ Supports your current Spark installation
▪ Packed into a single JAR file
▪ Plugin is enabled through a simple configuration handle
▪ Allows finer tuning with a set of configuration handles

▪ Configuration and deployment are on a per-job basis:
▪ Can be deployed incrementally
▪ May be limited to Shuffle-intensive jobs

20© 2018 Mellanox Technologies

Results

21© 2018 Mellanox Technologies

Performance Results: TeraSort

Testbed:
▪ HiBench TeraSort
▪ Workload: 175GB

▪ HDFS on Hadoop 2.6.0
▪ No replication

▪ Spark 2.2.0
▪ 1 Master
▪ 16 Workers
▪ 28 active Spark cores on each node,

420 total

▪ Node info:
▪ Intel Xeon E5-2697 v3 @ 2.60GHz
▪ RoCE 100GbE
▪ 256GB RAM
▪ HDD is used for Spark local

directories and HDFS

RDMA

Standar
d

0 20 40 60 80
seconds

22© 2018 Mellanox Technologies

Performance Results: GroupBy

Testbed:
▪ GroupBy
▪ 48M keys
▪ Each value: 4096 bytes
▪ Workload: 183GB

▪ Spark 2.2.0
▪ 1 Master
▪ 15 Workers
▪ 28 active Spark cores on each node,

420 total

▪ Node info:
▪ Intel Xeon E5-2697 v3 @ 2.60GHz
▪ RoCE 100GbE
▪ 256GB RAM
▪ HDD is used for Spark local

directories and HDFS

RDMA

Standar
d

0 5 10 15 20 25
seconds

23© 2018 Mellanox Technologies

Coming up next:
HDFS+RDMA

24© 2018 Mellanox Technologies

HDFS+RDMA

▪ All-new implementation of RDMA acceleration for HDFS
▪ Implements a new DataNode and DFSClient
▪ Data transfers are done in zero-copy, with RDMA

▪ Lower CPU, lower latency, higher throughput
▪ Efficient memory utilization

▪ Initial support:
▪ Hadoop: HDFS 2.6
▪ Cloudera: CDH 5.10
▪ WRITE operations over RDMA
▪ READ operations still carried over TCP in this version

▪ Future:
▪ READ operations with RDMA
▪ Erasure coding offloads on HDFS 3.X
▪ NVMeF

25© 2018 Mellanox Technologies

HDFS+RDMA

▪ Performance results: DFSIO - TCP vs. RDMA
▪ CDH 5.10
▪ 16 x DataNodes, 1 x NameNode
▪ Single HDD per DataNode
▪ RoCE 100GbE

▪ Up to x1.25 speedup in total runtime
▪ Up to x1.43 in throughput

0.00
10.00
20.00
30.00
40.00

TCP vs. RDMA: DFSIO write runtime in
seconds (lower is better)

TCP RDMA

0

200

400

600

TCP vs. RDMA: DFSIO write throughput
in MB/s (higher is better)

TCP RDMA

26© 2018 Mellanox Technologies

Roadmap
What’s next

27© 2018 Mellanox Technologies

Roadmap

▪ SparkRDMA v1.0 GA is available at https://github.com/Mellanox/SparkRDMA
▪ Quick installation guide
▪ Wiki pages for advanced settings

▪ SparkRDMA v2.0 GA – April 2018
▪ Significant performance improvements
▪ All-new robust messaging protocol
▪ Highly efficient memory management

▪ HDFS+RDMA v1.0 GA – Q2 2018
▪ WRITE operations with RDMA

https://github.com/Mellanox/SparkRDMA

28© 2018 Mellanox Technologies

Thank You

