AI for HPC and HPC for AI Workflows: The Differences, Gaps and Opportunities with Data Management

@SC Asia 2018

Rangan Sukumar, PhD Office of the CTO, Cray Inc.

COMPUTE

Safe Harbor Statement

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.

AI for HPC and HPC for AI @ Cray

Integrated Analytics and AI platform for Data Preparation and Machine Learning Dense GPU systems with broad support for NVIDIA® Tesla® Accelerators and FPGAs Scalable high performance supercomputers with Analytics and AI/DL

store

AI for HPC and HPC for AI: Today's talk

Big Four Consulting Firm

Urika-GX

"Teaming with Cray was a clear choice and allows for versatility combined with speed to tackle big data problems"

-- Deloitte Advisory Cyber Risk Services

Top 5 Global Pharma CS-Storm Dense GPU

Cluster

Supporting core research and development in areas including chem-informatics and large machine and deep learning workloads

Fortune 20 Global Technology Company

Cray CS-Storm Dense GPU Cluster

Recent win to support machine and deep learning workloads including autonomous vehicles The Stanford Research

Stanford University

Computing Facility

Cray CS-Storm "XStream" Dense GPU Cluster

Research in astrophysics, structural biology and bioinformatics, materials modeling, and climate

Recent breakthrough in 3D deep convolutional neural networks for amino acid environment similarity analysis

Argonne National Laboratory

Cray XC40

Predicting how specific patients and tumors respond to different types of drugs using the scalable deep neural network code called CANDLE — or CANcer Distributed Learning Environment

Leading Seismic Processing Services Company

Cray XC40

Machine Learning at Scale for Full Waveform Inversion

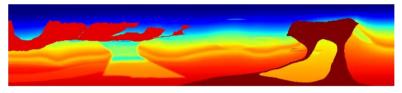
PGS applied machine learning optimization techniques such as regularization and steering to determine the velocity model in a Full Waveform Inversion seismic imaging workload.

COMPUTE

STOR

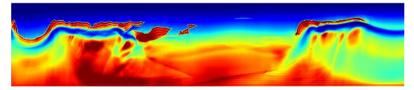
Use-case: AI for HPC Application

"Ground truth" Benchmark



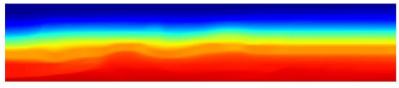
Conventional FWI

Synthetic benchmark with known subsurface geometry and seismic reflection data.



Conventional FWI attempts to derive a more accurate velocity model.

FWI with Machine Learning



Using machine learning (regularization and steering) to guide the convergence process.

COMPUTE 5

ORE

Use-case: HPC for AI Application

ZDNet

Q

VIDEOS CES 2018 SMART CITIES WINDOWS 10 CLOUD INNOVATION SECURITY MC

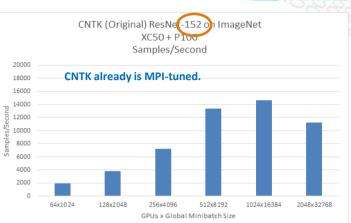
COMPUTE

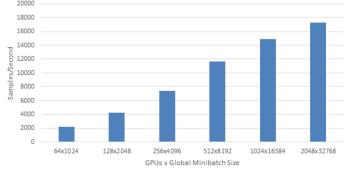
MUST READ AMAZON WON'T SAY IF IT HANDS YOUR ECHO DATA TO THE GOVERNMENT

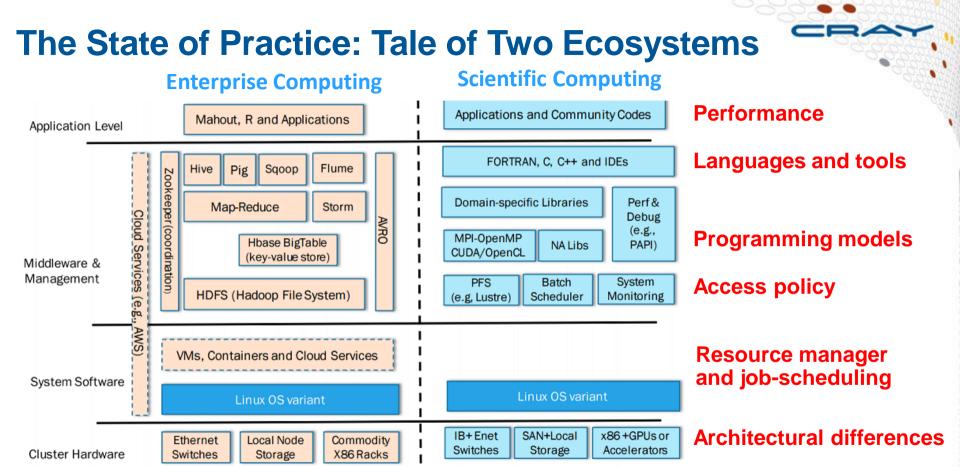
Microsoft, Cray claim deep learning breakthrough on supercomputers

Project could allow larger and more complex deep learning workloads on supercomputers.

By Steve Ranger | December 7, 2016 -- 12:09 GMT (04:09 PST) | Topic: Data Centers







J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

l S

Data Analytics Ecosystem

COMPUTE

TORE

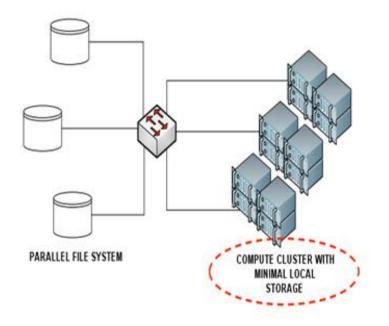
Computational Science Ecosystem

ANALYZE

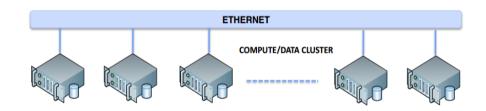
(7)

The State of Practice: AI for HPC and HPC for AI

Scientific Computing HPC Architectures



Enterprise Computing Commodity Architectures



Make assumptions about direction of data flow and requirements of data sizes to be moved

COMPUTE

STORE

The State of Practice: Tale of Two Ecosystems

	Scientific Computing	Enterprise Computing		
Primarily used for	Solving equations	Search/Query, Machine learning		
Philosophy	Send data to compute	Send compute to data		
Efficiency via	Parallelism	Distribution		
Scaling expectation	Strong (scale-up)	Weak (scale-out)		
Programming model	MPI, OpenMP, etc.	Map-reduce, SPMD, etc.		
Popular languages	FORTRAN, C++, Python	Java, Scala, Python, R		
Design strength	Multi-node communication using an interconnect	Built-in job fault tolerance over Ethernet		
Access model	On-premise	Cloud		
Preferred algebra	Dense Linear	Set-theoretic / Relational		
Memory access	Predictable	Random		
Storage	Centralized, POSIX/RAID	Decentralized, Duplication		

DRE

Terminologies: Tale of Two Ecosystems

COMPUTE

	Scientific Computing	Enterprise Computing		
Data (Structured)	Vector, Matrix, Tensor	Table, Key-Values, Objects		
Data (Unstructured)	Mesh, Images (Physics-based)	Documents, Images (Camera)		
Visualization	Voxel, Surface, Point Clouds	Word Cloud, Parallel Coordinates, BI Tools		
Validation	Cross-validation (ROC curves, statistical significance)	Manual / Subject matter expert, A/B testing		
Extract, Transform, Load	Fourier, Wavelet, Laplace, etc. Cartesian, Radial, Toroidal, etc.	File-format transformations e.g. CSV to VRML		
Search (Query)	Properties such as periodicity, self-similarity, anomaly, etc.	SQL, SPARQL, etc. (Sum, Average, Group by)		
Funding Model	Non-profit grand challenge (Answer matters)	Value-driven (Cost matters)		

Sukumar, S. R., et al., (2016, December). Kernels for scalable data analysis in science: Towards an architecture-portable future. *In the Proc. Of the 2016 IEEE International Conference on Big Data*, pp. 1026-1031.

ANALYZE

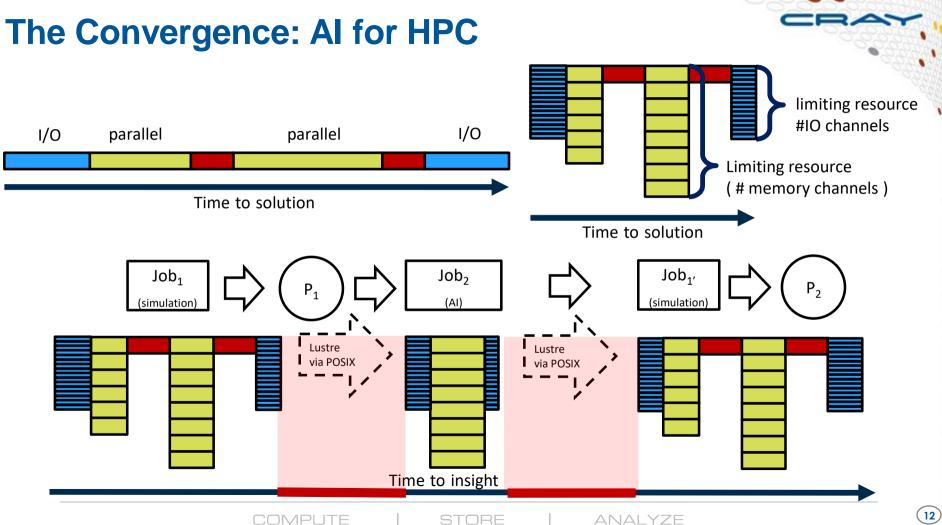
(10)

Deep Learning: Tale of Two Ecosystems

COMPUTE

	Scientific Computing	Enterprise Computing		
Model	Domain-specific	CNN, RNN, LSTM, GAN etc.		
Baseline	Theoretic e.g. Navier Stokes	Humans, Other ML algorithms		
Parallelism	Model, Ensemble	Data		
Use Case	Computational Steering Proxy models	Speech, Test Image interpretation Hyper-personalization		
Source File System	Lustre and GPFS	HDFS, S3, NFS etc.		
Figure of Merit	Interpretability, Feasibility	Time-to-accuracy, Model-size		
Training Data	O(GBs) per sample, O(10 ³) samples, O(10) categories	O(KBs) per sample, O(10 ⁶) samples, O(10 ⁴) categories		
Data Model	HDF5, NETCDF	Relational, Document, Key-Value		

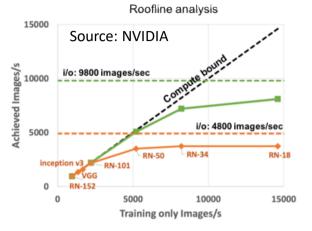
STORE

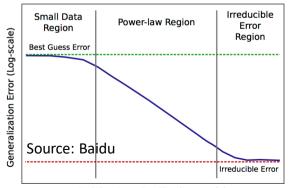


COMPUTE

STORE

The Convergence: HPC for AI





Training Data Set Size (Log-scale)

COMPUTE

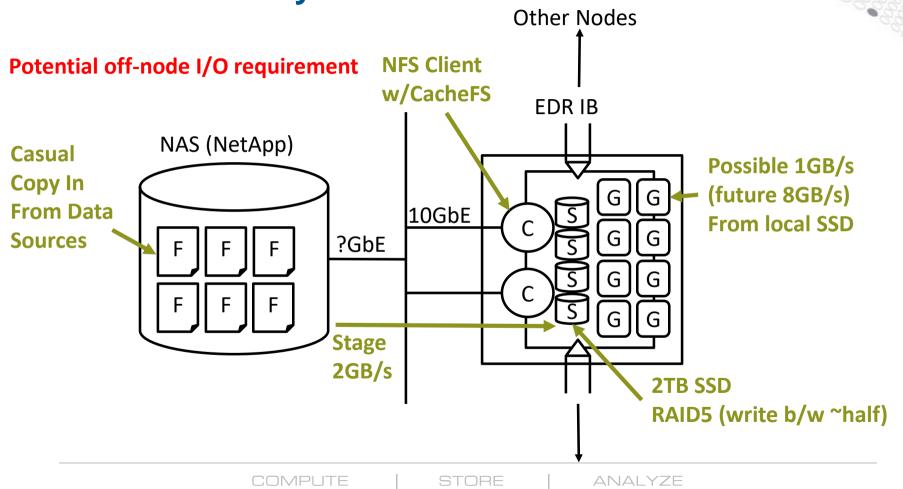
Opportunity for productivity with strong scaling

ResNet-50 Success	Time-to- accuracy	How many GPUs?	Scalability Efficiency
Facebook (Caffe2)	2 days 1 hour	352 GPUs 256	90% (large-batch)
IBM PowerAI (Caffe)	50 minutes	256 GPUs	95% (large-batch)
Google (TensorFlow)	~24 hours	64 TPUs	>90%
Preferred Networks (Chainer)	15 minutes	1000 GPUs	>90%
Cray @ CSCS (Tensorflow)	<14 minutes	1000 GPUs	~>95%

Productivity is performance and performance translates to productivity...

STOR

Bottlenecks Today



Bottlenecks Looking Ahead...

Figures-of-merit	State-of-practice	Projected 2 years ahead
Training-time to best accuracy	5+ days	2+ hours
Model Cost / TB (AWS GPUs)	~\$25K (ResNet training on 80 GPUs for 5 days)	~10K
Hardware Efficiency	O(~25 Gflops) Network Depth: Flops::20x: 16x (based on AlexNet-2012 and ResNet-2015)	O(Teraflops)
Statistical Efficiency	O(~25 Gflops) Depth: Accuracy:: 20x:13+ (based on AlexNet-2012 and ResNet-2015)	O(Teraflops)
Need for compute as data grows	O(~465 Gflops) Data: Flops: Error:: 2x: 5x: 3+ (based on DeepSpeech1 and DeepSpeech2)	O(Petaflops)
Training Cadence	~ Monthly	~ Daily
# of models per organization	1x	10-100x
	COMPUTE STORE	ANALYZE

(15)

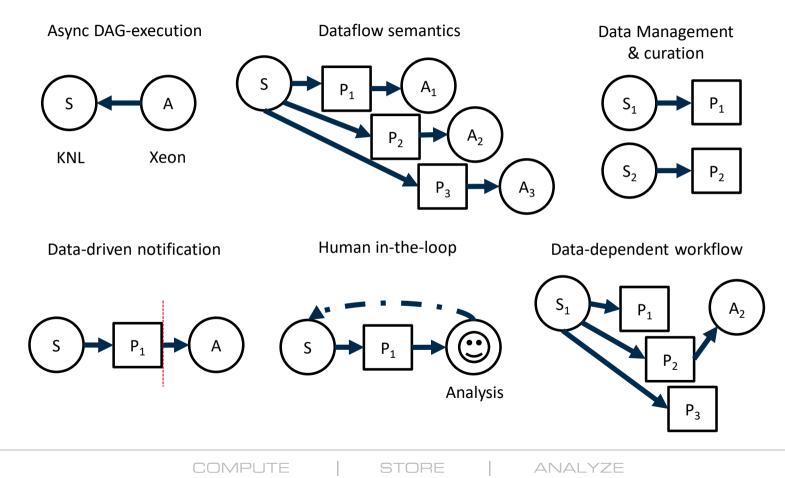
Solution: System to Eco-system Thinking

	Hardware	Software	Ecosystem		
	System	Function	Community Productivity		
Facility Performance	Utilization Peak vs. Sustained, Performance per \$	Application/Codes e.g. Deep Learning, Graph analytics	Domain-specific Creativity Is there an ecosystem of sustainable community (open-source) engagement that enables vertical		
System Performance	Reliability Faults, MTTF, Uptime Scalability Weak and strong	Kernel/Motif e.g. DGEMM, SYRK, ReLU, inner product	Code Portability		
Multi-node Performance	System Architecture		Does a user have to rewrite code? Does vendor support code porting for novel architectures?		
Node	Interconnect eth, InfiniBand, AriesProvisioning Mesos, Moab, SLURM	Programming Model e.g. MR, PGAS, GRPC	Programmability Does an end-user have to learn a new language or can		
Performance	Node Architecture # of xPUs+ cache + memory + network	Libraries e.g. MKL, CUDA, libSci Collectives e.g. NCCL, MPI	they launch jobs with modern tools (e.g. notebooks)? Data Pre-Processing Does system offer tools to optimize ETL wall-time?		
Component Performance	Disk Memory xPU Latency Capacity, Latency Speed i/o	Data Structure e.g. matrix, sequences, unstructured grids	Does system provide ability to run multiple frameworks/applications on the same data?		

COMPUTE

STOR

Solution: Communication-Aware Data Objects



(17)

Solution: HPC Best Practices for Data Management

Making data access and I/O methods available / relevant to all levels of the software stack.

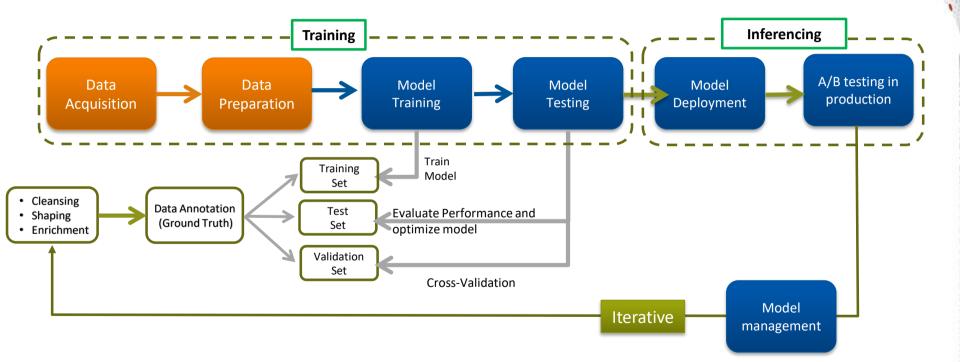
HBM		memkind			memkind	
GPU MEM		CUDA	CUDA	РТХ	CUDA	
DRAM	C / ASM	C / ASM	С	C / ASM	C / Fortran	
NV-DIMM		pmem	pmem		pmem / pmemkind	pmem / pmemkind
LOCAL SSD					POSIX	POSIX
BURST BUFFER					DSL (e.g Datawarp)	DSL (e.g Datawarp)
Network SSD					POSIX	POSIX
DISK / PFS	POSIX / swap				POSIX / MPI-IO	POSIX
ТАРЕ						TSM
CLOUD						S3
	Operating Systems	Runtimes	Systems Software	Programming Environments	Applications	Workflows

COMPUTE

STORE

Solution: End-to-End Thinking with Benchmarks

COMPUTE



Future: Integration of Storage, Memory and Compute

General purpose flexibility

• Commodity-like configurations

Seamless heterogeneity

• CPUs, GPUs, FPGAs, ASICs

High-performance interconnects for data centers

• MPI and TCP/IP collectives, compute on the network

Unified software stack

• Programming environment for performance and productivity

Workflow optimization

• Match growth in compute and data with I/O