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A Perspective from (non-HPC) 

System and Networking Community

• Prof. Kai Chen and System & Networking Lab @ HKUST

• Research interests include networked systems design and 

implementation, data center networks, data centric 

networking, and cloud & big data systems

• 5 papers in NSDI’15-18, 4 papers in SIGCOMM’15-17

• Collaborations with industrial partners including Tencent & 

Huawei on real-world systems in AI, Big Data, and Cloud

2



Industrial Experience from an 

Academic Lab?

• Worked on real-world AI & Big Data systems, like CoDA with 

Huawei (2015), Tencent Angel (2016), WeChat Amber (2017)

• Contributed network optimisation patches to several open 

source projects, including TensorFlow & Apache MXNet

• A recently funded startup in Beijing, providing commodity & 

high performance data center networking solutions to AI 

teams of data scientists, developers, and operations
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Agenda

• A glance to commodity data center networking

• Convergence of networking in cloud data centers

• Anti-patterns with high performance networks

• End-to-end design principles for AI frameworks
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The Rise of Cloud Computing
40 Azure Regions across the World
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Data Centers
What does data center network look like?
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What Modern Data Center 

Networks Offer

• High throughput: single connection at line rate

• Low latency: 99.9% tail latency within 200 μs*

• Scalability: >100,000 nodes in routable IP network

• Commodity: <$100($500) 25(100) GbE per port
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*RDMA over Commodity Ethernet at Scale, SIGCOMM’16



Convergence of Data Center 

Networking Technologies

• InfiniBand, OmniPath, Fibre Channel, and PLX (PCIe Switch)

• Replacing 4 networks (and switches) with a single Ethernet

• Convergence of networking applications to IP as well: 

computation, storage, messaging, and remote management

• (Routable) RDMA over Converged Ethernet (RoCEv2)
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Evolution of Network I/O

• Latency dropped from ~10 ms to ~10 μs

• From kernel to user space (VMA, DPDK, Onload)

• From software to hardware (RoCE, iWARP)

• Reduced CPU load for better performance
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Software Anti-Patterns

• High performance networking costs and we can only 

afford commodity Ethernet (a.k.a. AWS VPC) 

• Network communication hurts performance and we 

need to avoid communication as much as possible 

• Either high-level APIs with poor performance or low-

level APIs with high performance; not both
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Networking APIs Revisited

• Messaging libraries: socket, 0MQ, Netty, Akka

• RPC libraries: gRPC, Thrift, Dubbo, brpc

• Encoding libraries: protobuf, thrift, kryo, flatbuffers

• Compression libraries: zlib, snappy, lz4
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Lesson Learnt: Do not encode your data

when your network >100 Gbps

~100 MB/s

encoding throughput

Taken from: https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
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Lesson Learnt: Do not compress your data

when your network >100 Gbps

Taken from: https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/

~850 MB/s

compression throughput

https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/


How about Memory Copy?
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Cached Writes: 37.7 GB/s at 16 KB, 3.0 GB/s >L3 cache 

Cache Bypassed Writes: 3.0 GB/s at all buffer sizes

Taken from: http://zsmith.co/bandwidth.html
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AI Applications are Bottlenecked 

by its Anti-Patterns

• The performance of Spark 1.4 increases only 2% by 

medium even if the network is infinitely fast*!

• Encoding, compression, serialisation, and memory 

copying take the most CPU cycles, not networking 

(nor disk I/O; about 20% better if it’s infinitely fast)

• Software architecture makes CPU its bottleneck
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*Making Sense of Performance in Data Analytics Frameworks, NSDI’15
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Networking
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RDMA???

CUDA??? NVMe???
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* Removing Ser/Des gives 1.5 GB/s throughput

Yahoo’s TensorFlow RDMA



0-Copy Dataflow

• The end-to-end offloaded dataflow pipeline: NVMe 

storage, RDMA networks, and GPU accelerators

• Lesson learnt from network switches: we need to 

separate control plane and data plane

• CPU/software for flexible control plane, hardware 

offloading for high performance data plane 

20



Disaggregated Architecture
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High Performance Data Plane

Offloaded Computation/Networking/Storage

CPU/Software 

Control Plane
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Device
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Device

Network 

Device

Lean Data Structures

P2P Switching
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TensorFlow GDR



TensorFlow GDR

• We kept 100% gRPC calls without introducing 

significant overhead compared to pure RDMA

• Easy to fallback to gRPC with mixed deployment

• Less code changes compared to verbs with even 

more features (<1,000 lines of C++, mostly on GPU 

Direct RDMA and RDMA memory management)
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WeChat’s Amber w/ RDMA
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Taken from: http://www.infoq.com/cn/news/2017/08/RoCE-wechat-amber

http://www.infoq.com/cn/news/2017/08/RoCE-wechat-amber


WeChat’s Amber w/ RDMA
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Scalability Ratio (0MQ for TCP)

Ego Network Deep Conversation Object Recognition

Taken from: http://www.infoq.com/cn/news/2017/08/RoCE-wechat-amber

http://www.infoq.com/cn/news/2017/08/RoCE-wechat-amber


To Copy or Not To Copy

• RDMA messages need to be registered (pinned) 

through ibv_reg_mr before send/recv

• Pinning memory pages through get_user_pages in 

kernel is costly, e.s.p. frequently for small buffers

• Typically we introduce transmitting/receiving side ring 

buffers w/ huge pages for RDMA buffer reuse

• Buffer bloat and extra latency introduced in copy
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Looking Forward

• Unified Virtual Memory (UVM) in CUDA 6

• On Demand Paging (ODP) in OFED 4

• MSG_ZEROCOPY by Google in Linux 4.14

• Heterogeneous Memory Management (HMM) for 

universal coherent host+device memory space
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Conclusion

• Embrace end-to-end principle designing AI 

frameworks for data intensive applications

• Revisit old operating system concepts and learn how 

to write low level programs for your hardware

• Combining high-level APIs with efficient offloading 

actually works (as long as hardware does all the heavy 

lifting and software only in the control plane)
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Questions?
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